File size: 15,094 Bytes
1809fe4
696b9f6
e7bca60
1809fe4
 
6ff7518
 
 
1809fe4
 
 
 
 
 
 
5af1eea
6ff7518
1809fe4
 
6ff7518
6c43284
ab1a5ae
 
1809fe4
696b9f6
b078538
 
6ff7518
 
1809fe4
 
b078538
 
e7bca60
 
1809fe4
b078538
6ff7518
1809fe4
 
 
c7a648a
b078538
e7bca60
 
 
 
 
 
b078538
 
e7bca60
 
b078538
 
e7bca60
 
 
b078538
e7bca60
 
 
 
 
 
b078538
6ff7518
 
 
 
 
e7bca60
b078538
6ff7518
 
b078538
e7bca60
b078538
1809fe4
 
 
e7bca60
 
 
 
 
988efc8
 
 
e7bca60
 
 
 
 
 
 
6ff7518
e7bca60
6ff7518
e7bca60
 
 
 
 
 
 
 
6ff7518
 
e7bca60
 
6ff7518
e7bca60
 
 
 
 
 
 
 
 
 
 
 
2f98862
6ff7518
 
 
 
ef798fd
6ff7518
ef798fd
6ff7518
e7bca60
 
 
 
 
 
 
 
 
 
6ff7518
e7bca60
 
 
 
 
6ff7518
e7bca60
 
 
594238d
 
 
 
 
 
e7bca60
1809fe4
 
e7bca60
 
6ff7518
e7bca60
 
 
6ff7518
e7bca60
 
 
 
 
 
 
 
 
 
6ff7518
f1b0be5
 
 
 
 
 
 
94bae10
 
6ff7518
 
f1b0be5
6c43284
 
f1b0be5
6ff7518
 
 
 
6c43284
 
f1b0be5
6ff7518
 
 
 
f1b0be5
6ff7518
 
 
 
 
 
 
 
 
 
 
 
6c43284
 
 
 
5af1eea
6c43284
 
5af1eea
6c43284
 
594238d
6c43284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1b0be5
6ff7518
6c43284
6ff7518
f1b0be5
6ff7518
 
 
e7bca60
 
1809fe4
e7bca60
 
6ff7518
1809fe4
e7bca60
1809fe4
e7bca60
2f98862
e7bca60
 
1809fe4
 
e7bca60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ff7518
e7bca60
 
 
 
 
 
 
 
d08c80a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ff7518
c7a648a
 
2f98862
e7bca60
1809fe4
e7bca60
 
1809fe4
 
e7bca60
6ff7518
ef798fd
6ff7518
e7bca60
 
 
6ff7518
e7bca60
 
 
1809fe4
c7a648a
1809fe4
e7bca60
6ff7518
e7bca60
6ff7518
e7bca60
 
 
c7a648a
1809fe4
e7bca60
6ff7518
e7bca60
6ff7518
e7bca60
 
1809fe4
e7bca60
6ff7518
 
e7bca60
 
6ff7518
 
1809fe4
6ff7518
 
1a9c5b9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import gradio as gr
import spaces

import os
import shutil
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from trellis.pipelines import TrellisTextTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
from gradio.processing_utils import move_resource_to_block_cache

import traceback
import sys
import logging
import requests


MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)

logging.basicConfig(level=logging.INFO)


def start_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)
    
    
def end_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    shutil.rmtree(user_dir)


def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
    return {
        'gaussian': {
            **gs.init_params,
            '_xyz': gs._xyz.cpu().numpy(),
            '_features_dc': gs._features_dc.cpu().numpy(),
            '_scaling': gs._scaling.cpu().numpy(),
            '_rotation': gs._rotation.cpu().numpy(),
            '_opacity': gs._opacity.cpu().numpy(),
        },
        'mesh': {
            'vertices': mesh.vertices.cpu().numpy(),
            'faces': mesh.faces.cpu().numpy(),
        },
    }
    
    
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
    gs = Gaussian(
        aabb=state['gaussian']['aabb'],
        sh_degree=state['gaussian']['sh_degree'],
        mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
        scaling_bias=state['gaussian']['scaling_bias'],
        opacity_bias=state['gaussian']['opacity_bias'],
        scaling_activation=state['gaussian']['scaling_activation'],
    )
    gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
    gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
    gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
    gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
    gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
    
    mesh = edict(
        vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
        faces=torch.tensor(state['mesh']['faces'], device='cuda'),
    )
    
    return gs, mesh


def get_seed(randomize_seed: bool, seed: int) -> int:
    """
    Get the random seed.
    """
    return np.random.randint(0, MAX_SEED) if randomize_seed else seed


@spaces.GPU
def text_to_3d(
    prompt: str,
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
    req: gr.Request,
) -> Tuple[dict, str]:
    """
    Convert an text prompt to a 3D model.
    Args:
        prompt (str): The text prompt.
        seed (int): The random seed.
        ss_guidance_strength (float): The guidance strength for sparse structure generation.
        ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
        slat_guidance_strength (float): The guidance strength for structured latent generation.
        slat_sampling_steps (int): The number of sampling steps for structured latent generation.
    Returns:
        dict: The information of the generated 3D model.
        str: The path to the video of the 3D model.
    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)
    outputs = pipeline.run(
        prompt,
        seed=seed,
        formats=["gaussian", "mesh"],
        sparse_structure_sampler_params={
            "steps": ss_sampling_steps,
            "cfg_strength": ss_guidance_strength,
        },
        slat_sampler_params={
            "steps": slat_sampling_steps,
            "cfg_strength": slat_guidance_strength,
        },
    )
    video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
    video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
    video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
    video_path = os.path.join(user_dir, 'sample.mp4')
    imageio.mimsave(video_path, video, fps=15)
    state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
    torch.cuda.empty_cache()
    return state, video_path


@spaces.GPU(duration=90)
def extract_glb(
    state: dict,
    mesh_simplify: float,
    texture_size: int,
    req: gr.Request,
) -> Tuple[str, str]:
    """
    Extract a GLB file from the 3D model.
    Args:
        state (dict): The state of the generated 3D model.
        mesh_simplify (float): The mesh simplification factor.
        texture_size (int): The texture resolution.
    Returns:
        str: The path to the extracted GLB file.
    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)
    gs, mesh = unpack_state(state)
    glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
    glb_path = os.path.join(user_dir, 'sample.glb')
    glb.export(glb_path)
    torch.cuda.empty_cache()
    return glb_path, glb_path


@spaces.GPU
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
    """
    Extract a Gaussian file from the 3D model.
    Args:
        state (dict): The state of the generated 3D model.
    Returns:
        str: The path to the extracted Gaussian file.
    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)
    gs, _ = unpack_state(state)
    gaussian_path = os.path.join(user_dir, 'sample.ply')
    gs.save_ply(gaussian_path)
    torch.cuda.empty_cache()
    return gaussian_path, gaussian_path


@spaces.GPU
def generate_and_extract_glb(
    prompt: str,
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
    mesh_simplify: float,
    texture_size: int,
    req: gr.Request,
) -> str:
    """
    Runs the full text_to_3d and extract_glb pipeline internally,
    then uploads the GLB to the Node.js server and returns the persistent URL.
    """
    request_hash = str(req.session_hash)[:8]
    logging.info(f"[{request_hash}] ENTER generate_and_extract_glb")
    logging.info(f"[{request_hash}] Received parameters: prompt='{prompt}', seed={seed}, simplify={mesh_simplify}, tex_size={texture_size}, ...")

    NODE_SERVER_UPLOAD_URL = "https://viverse-backend.onrender.com/api/upload-rigged-model"

    try:
        logging.info(f"[{request_hash}] Calling internal text_to_3d...")
        state, _ = text_to_3d(
            prompt, seed, ss_guidance_strength, ss_sampling_steps,
            slat_guidance_strength, slat_sampling_steps, req
        )
        if state is None:
            logging.error(f"[{request_hash}] Internal text_to_3d returned None state!")
            raise ValueError("Internal text_to_3d failed to return state")
        logging.info(f"[{request_hash}] Internal text_to_3d completed. State type: {type(state)}")

        logging.info(f"[{request_hash}] Calling internal extract_glb...")
        glb_path, _ = extract_glb(
            state, mesh_simplify, texture_size, req
        )
        if glb_path is None:
            logging.error(f"[{request_hash}] Internal extract_glb returned None path!")
            raise ValueError("Internal extract_glb failed to return GLB path")
        if not os.path.isfile(glb_path):
            logging.error(f"[{request_hash}] GLB file not found at path: {glb_path}")
            raise FileNotFoundError(f"Generated GLB file not found at {glb_path}")
        logging.info(f"[{request_hash}] Internal extract_glb completed. GLB path: {glb_path}")

        logging.info(f"[{request_hash}] Uploading GLB from {glb_path} to {NODE_SERVER_UPLOAD_URL}")
        persistent_url = None
        try:
            with open(glb_path, "rb") as f:
                files = {"modelFile": (os.path.basename(glb_path), f, "model/gltf-binary")}
                payload = {"clientType": "playcanvas"}
                response = requests.post(NODE_SERVER_UPLOAD_URL, files=files, data=payload)
                response.raise_for_status()
                result = response.json()
                persistent_url = result.get("persistentUrl")
                if not persistent_url:
                    logging.error(f"[{request_hash}] No persistent URL in Node.js server response: {result}")
                    raise ValueError("Upload successful, but no persistent URL returned")
                logging.info(f"[{request_hash}] Successfully uploaded to Node server. Persistent URL: {persistent_url}")
        except requests.exceptions.RequestException as upload_err:
            logging.error(f"[{request_hash}] FAILED to upload GLB to Node server: {upload_err}")
            if hasattr(upload_err, 'response') and upload_err.response is not None:
                logging.error(f"[{request_hash}] Node server response status: {upload_err.response.status_code}")
                logging.error(f"[{request_hash}] Node server response text: {upload_err.response.text}")
            raise gr.Error(f"Failed to upload result to backend server: {upload_err}")
        except Exception as e:
            logging.error(f"[{request_hash}] UNEXPECTED error during upload: {e}", exc_info=True)
            raise gr.Error(f"Unexpected error during upload: {e}")

        logging.info(f"[{request_hash}] EXIT generate_and_extract_glb - Returning persistent URL: {persistent_url}")
        return persistent_url

    except Exception as e:
        logging.error(f"[{request_hash}] ERROR in generate_and_extract_glb pipeline: {e}", exc_info=True)
        raise gr.Error(f"Pipeline failed: {e}")


output_buf = gr.State()
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)

with gr.Blocks(delete_cache=(600, 600)) as demo:
    gr.Markdown("""
    ## Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
    * Type a text prompt and click "Generate" to create a 3D asset.
    * If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
    """)
    
    with gr.Row():
        with gr.Column():
            text_prompt = gr.Textbox(label="Text Prompt", lines=5)
            
            with gr.Accordion(label="Generation Settings", open=False):
                seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                gr.Markdown("Stage 1: Sparse Structure Generation")
                with gr.Row():
                    ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                    ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1)
                gr.Markdown("Stage 2: Structured Latent Generation")
                with gr.Row():
                    slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                    slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1)

            generate_btn = gr.Button("Generate")
            
            with gr.Accordion(label="GLB Extraction Settings", open=False):
                mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
                texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
            
            with gr.Row():
                extract_glb_btn = gr.Button("Extract GLB", interactive=False)
                extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
            gr.Markdown("""
                        *NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
                        """)

        with gr.Column():
            video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
            model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300)
            
            with gr.Row():
                download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
                download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)  
    
    output_buf = gr.State()

    # --- Add this section to explicitly register the API function ---
    with gr.Row(visible=False): # Hide this row in the UI
        api_trigger_btn = gr.Button("API Trigger")
    dummy_output_for_api = gr.Textbox(visible=False) # Output type doesn't matter much here
    dummy_inputs_for_api = [
        text_prompt, seed, ss_guidance_strength, ss_sampling_steps,
        slat_guidance_strength, slat_sampling_steps, mesh_simplify, texture_size
    ]
    api_trigger_btn.click(
         generate_and_extract_glb,
         inputs=dummy_inputs_for_api, # Define inputs needed
         outputs=[dummy_output_for_api], # Define an output
         api_name="generate_and_extract_glb" # CRITICAL: Register the API name
    )
    # --- End API registration section ---

    # Handlers
    demo.load(start_session)
    demo.unload(end_session)

    generate_btn.click(
        get_seed,
        inputs=[randomize_seed, seed],
        outputs=[seed],
    ).then(
        text_to_3d,
        inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
        outputs=[output_buf, video_output],
    ).then(
        lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
        outputs=[extract_glb_btn, extract_gs_btn],
    )

    video_output.clear(
        lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
        outputs=[extract_glb_btn, extract_gs_btn],
    )

    extract_glb_btn.click(
        extract_glb,
        inputs=[output_buf, mesh_simplify, texture_size],
        outputs=[model_output, download_glb],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_glb],
    )
    
    extract_gs_btn.click(
        extract_gaussian,
        inputs=[output_buf],
        outputs=[model_output, download_gs],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_gs],
    )

    model_output.clear(
        lambda: gr.Button(interactive=False),
        outputs=[download_glb],
    )
    

# Launch the Gradio app
if __name__ == "__main__":
    pipeline = TrellisTextTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-text-xlarge")
    pipeline.cuda()
    # Explicitly allow serving files from the base temp dir and the Gradio cache dir
    allowed_paths = [TMP_DIR, "/tmp/gradio"]
    print(f"Launching Gradio demo with allowed_paths: {allowed_paths}")
    demo.launch(allowed_paths=allowed_paths)