Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,094 Bytes
1809fe4 696b9f6 e7bca60 1809fe4 6ff7518 1809fe4 5af1eea 6ff7518 1809fe4 6ff7518 6c43284 ab1a5ae 1809fe4 696b9f6 b078538 6ff7518 1809fe4 b078538 e7bca60 1809fe4 b078538 6ff7518 1809fe4 c7a648a b078538 e7bca60 b078538 e7bca60 b078538 e7bca60 b078538 e7bca60 b078538 6ff7518 e7bca60 b078538 6ff7518 b078538 e7bca60 b078538 1809fe4 e7bca60 988efc8 e7bca60 6ff7518 e7bca60 6ff7518 e7bca60 6ff7518 e7bca60 6ff7518 e7bca60 2f98862 6ff7518 ef798fd 6ff7518 ef798fd 6ff7518 e7bca60 6ff7518 e7bca60 6ff7518 e7bca60 594238d e7bca60 1809fe4 e7bca60 6ff7518 e7bca60 6ff7518 e7bca60 6ff7518 f1b0be5 94bae10 6ff7518 f1b0be5 6c43284 f1b0be5 6ff7518 6c43284 f1b0be5 6ff7518 f1b0be5 6ff7518 6c43284 5af1eea 6c43284 5af1eea 6c43284 594238d 6c43284 f1b0be5 6ff7518 6c43284 6ff7518 f1b0be5 6ff7518 e7bca60 1809fe4 e7bca60 6ff7518 1809fe4 e7bca60 1809fe4 e7bca60 2f98862 e7bca60 1809fe4 e7bca60 6ff7518 e7bca60 d08c80a 6ff7518 c7a648a 2f98862 e7bca60 1809fe4 e7bca60 1809fe4 e7bca60 6ff7518 ef798fd 6ff7518 e7bca60 6ff7518 e7bca60 1809fe4 c7a648a 1809fe4 e7bca60 6ff7518 e7bca60 6ff7518 e7bca60 c7a648a 1809fe4 e7bca60 6ff7518 e7bca60 6ff7518 e7bca60 1809fe4 e7bca60 6ff7518 e7bca60 6ff7518 1809fe4 6ff7518 1a9c5b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
import gradio as gr
import spaces
import os
import shutil
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from trellis.pipelines import TrellisTextTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
from gradio.processing_utils import move_resource_to_block_cache
import traceback
import sys
import logging
import requests
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
logging.basicConfig(level=logging.INFO)
def start_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
shutil.rmtree(user_dir)
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh
def get_seed(randomize_seed: bool, seed: int) -> int:
"""
Get the random seed.
"""
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
@spaces.GPU
def text_to_3d(
prompt: str,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
req: gr.Request,
) -> Tuple[dict, str]:
"""
Convert an text prompt to a 3D model.
Args:
prompt (str): The text prompt.
seed (int): The random seed.
ss_guidance_strength (float): The guidance strength for sparse structure generation.
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
slat_guidance_strength (float): The guidance strength for structured latent generation.
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
Returns:
dict: The information of the generated 3D model.
str: The path to the video of the 3D model.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
outputs = pipeline.run(
prompt,
seed=seed,
formats=["gaussian", "mesh"],
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
video_path = os.path.join(user_dir, 'sample.mp4')
imageio.mimsave(video_path, video, fps=15)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
torch.cuda.empty_cache()
return state, video_path
@spaces.GPU(duration=90)
def extract_glb(
state: dict,
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> Tuple[str, str]:
"""
Extract a GLB file from the 3D model.
Args:
state (dict): The state of the generated 3D model.
mesh_simplify (float): The mesh simplification factor.
texture_size (int): The texture resolution.
Returns:
str: The path to the extracted GLB file.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
gs, mesh = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = os.path.join(user_dir, 'sample.glb')
glb.export(glb_path)
torch.cuda.empty_cache()
return glb_path, glb_path
@spaces.GPU
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
"""
Extract a Gaussian file from the 3D model.
Args:
state (dict): The state of the generated 3D model.
Returns:
str: The path to the extracted Gaussian file.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
gs, _ = unpack_state(state)
gaussian_path = os.path.join(user_dir, 'sample.ply')
gs.save_ply(gaussian_path)
torch.cuda.empty_cache()
return gaussian_path, gaussian_path
@spaces.GPU
def generate_and_extract_glb(
prompt: str,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> str:
"""
Runs the full text_to_3d and extract_glb pipeline internally,
then uploads the GLB to the Node.js server and returns the persistent URL.
"""
request_hash = str(req.session_hash)[:8]
logging.info(f"[{request_hash}] ENTER generate_and_extract_glb")
logging.info(f"[{request_hash}] Received parameters: prompt='{prompt}', seed={seed}, simplify={mesh_simplify}, tex_size={texture_size}, ...")
NODE_SERVER_UPLOAD_URL = "https://viverse-backend.onrender.com/api/upload-rigged-model"
try:
logging.info(f"[{request_hash}] Calling internal text_to_3d...")
state, _ = text_to_3d(
prompt, seed, ss_guidance_strength, ss_sampling_steps,
slat_guidance_strength, slat_sampling_steps, req
)
if state is None:
logging.error(f"[{request_hash}] Internal text_to_3d returned None state!")
raise ValueError("Internal text_to_3d failed to return state")
logging.info(f"[{request_hash}] Internal text_to_3d completed. State type: {type(state)}")
logging.info(f"[{request_hash}] Calling internal extract_glb...")
glb_path, _ = extract_glb(
state, mesh_simplify, texture_size, req
)
if glb_path is None:
logging.error(f"[{request_hash}] Internal extract_glb returned None path!")
raise ValueError("Internal extract_glb failed to return GLB path")
if not os.path.isfile(glb_path):
logging.error(f"[{request_hash}] GLB file not found at path: {glb_path}")
raise FileNotFoundError(f"Generated GLB file not found at {glb_path}")
logging.info(f"[{request_hash}] Internal extract_glb completed. GLB path: {glb_path}")
logging.info(f"[{request_hash}] Uploading GLB from {glb_path} to {NODE_SERVER_UPLOAD_URL}")
persistent_url = None
try:
with open(glb_path, "rb") as f:
files = {"modelFile": (os.path.basename(glb_path), f, "model/gltf-binary")}
payload = {"clientType": "playcanvas"}
response = requests.post(NODE_SERVER_UPLOAD_URL, files=files, data=payload)
response.raise_for_status()
result = response.json()
persistent_url = result.get("persistentUrl")
if not persistent_url:
logging.error(f"[{request_hash}] No persistent URL in Node.js server response: {result}")
raise ValueError("Upload successful, but no persistent URL returned")
logging.info(f"[{request_hash}] Successfully uploaded to Node server. Persistent URL: {persistent_url}")
except requests.exceptions.RequestException as upload_err:
logging.error(f"[{request_hash}] FAILED to upload GLB to Node server: {upload_err}")
if hasattr(upload_err, 'response') and upload_err.response is not None:
logging.error(f"[{request_hash}] Node server response status: {upload_err.response.status_code}")
logging.error(f"[{request_hash}] Node server response text: {upload_err.response.text}")
raise gr.Error(f"Failed to upload result to backend server: {upload_err}")
except Exception as e:
logging.error(f"[{request_hash}] UNEXPECTED error during upload: {e}", exc_info=True)
raise gr.Error(f"Unexpected error during upload: {e}")
logging.info(f"[{request_hash}] EXIT generate_and_extract_glb - Returning persistent URL: {persistent_url}")
return persistent_url
except Exception as e:
logging.error(f"[{request_hash}] ERROR in generate_and_extract_glb pipeline: {e}", exc_info=True)
raise gr.Error(f"Pipeline failed: {e}")
output_buf = gr.State()
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
with gr.Blocks(delete_cache=(600, 600)) as demo:
gr.Markdown("""
## Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
* Type a text prompt and click "Generate" to create a 3D asset.
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
""")
with gr.Row():
with gr.Column():
text_prompt = gr.Textbox(label="Text Prompt", lines=5)
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1)
generate_btn = gr.Button("Generate")
with gr.Accordion(label="GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
with gr.Row():
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
gr.Markdown("""
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
""")
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300)
with gr.Row():
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
output_buf = gr.State()
# --- Add this section to explicitly register the API function ---
with gr.Row(visible=False): # Hide this row in the UI
api_trigger_btn = gr.Button("API Trigger")
dummy_output_for_api = gr.Textbox(visible=False) # Output type doesn't matter much here
dummy_inputs_for_api = [
text_prompt, seed, ss_guidance_strength, ss_sampling_steps,
slat_guidance_strength, slat_sampling_steps, mesh_simplify, texture_size
]
api_trigger_btn.click(
generate_and_extract_glb,
inputs=dummy_inputs_for_api, # Define inputs needed
outputs=[dummy_output_for_api], # Define an output
api_name="generate_and_extract_glb" # CRITICAL: Register the API name
)
# --- End API registration section ---
# Handlers
demo.load(start_session)
demo.unload(end_session)
generate_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
).then(
text_to_3d,
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf, video_output],
).then(
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
outputs=[extract_glb_btn, extract_gs_btn],
)
video_output.clear(
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
outputs=[extract_glb_btn, extract_gs_btn],
)
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
).then(
lambda: gr.Button(interactive=True),
outputs=[download_glb],
)
extract_gs_btn.click(
extract_gaussian,
inputs=[output_buf],
outputs=[model_output, download_gs],
).then(
lambda: gr.Button(interactive=True),
outputs=[download_gs],
)
model_output.clear(
lambda: gr.Button(interactive=False),
outputs=[download_glb],
)
# Launch the Gradio app
if __name__ == "__main__":
pipeline = TrellisTextTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-text-xlarge")
pipeline.cuda()
# Explicitly allow serving files from the base temp dir and the Gradio cache dir
allowed_paths = [TMP_DIR, "/tmp/gradio"]
print(f"Launching Gradio demo with allowed_paths: {allowed_paths}")
demo.launch(allowed_paths=allowed_paths) |