File size: 9,217 Bytes
c83be2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a31ff1
c83be2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import torch
from torch import nn
from torch.nn import init
import torch.nn.functional as F
from torch.optim import Adam
import numpy
from einops import rearrange
import time
from transformer import Transformer
from Intra_MLP import index_points,knn_l2

# vgg choice
base = {'vgg': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M']}

# vgg16
def vgg(cfg, i=3, batch_norm=True):
    layers = []
    in_channels = i
    for v in cfg:
        if v == 'M':
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        else:
            conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
            if batch_norm:
                layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
            else:
                layers += [conv2d, nn.ReLU(inplace=True)]
            in_channels = v
    return layers


def hsp(in_channel, out_channel):
    layers = nn.Sequential(nn.Conv2d(in_channel, out_channel, 1, 1),
                           nn.ReLU())
    return layers

def cls_modulation_branch(in_channel, hiden_channel):
    layers = nn.Sequential(nn.Linear(in_channel, hiden_channel),
                           nn.ReLU())
    return layers

def cls_branch(hiden_channel, class_num):
    layers = nn.Sequential(nn.Linear(hiden_channel, class_num),
                           nn.Sigmoid())
    return layers

def intra():
    layers = []
    layers += [nn.Conv2d(512, 512, 1, 1)]
    layers += [nn.Sigmoid()]
    return layers

def concat_r():
    layers = []
    layers += [nn.Conv2d(512, 512, 1, 1)]
    layers += [nn.ReLU()]
    layers += [nn.Conv2d(512, 512, 3, 1, 1)]
    layers += [nn.ReLU()]
    layers += [nn.ConvTranspose2d(512, 512, 4, 2, 1)]
    return layers

def concat_1():
    layers = []
    layers += [nn.Conv2d(512, 512, 1, 1)]
    layers += [nn.ReLU()]
    layers += [nn.Conv2d(512, 512, 3, 1, 1)]
    layers += [nn.ReLU()]
    return layers

def mask_branch():
    layers = []
    layers += [nn.Conv2d(512, 2, 3, 1, 1)]
    layers += [nn.ConvTranspose2d(2, 2, 8, 4, 2)]
    layers += [nn.Softmax2d()]
    return layers

def incr_channel():
    layers = []
    layers += [nn.Conv2d(128, 512, 3, 1, 1)]
    layers += [nn.Conv2d(256, 512, 3, 1, 1)]
    layers += [nn.Conv2d(512, 512, 3, 1, 1)]
    layers += [nn.Conv2d(512, 512, 3, 1, 1)]
    return layers

def incr_channel2():
    layers = []
    layers += [nn.Conv2d(512, 512, 3, 1, 1)]
    layers += [nn.Conv2d(512, 512, 3, 1, 1)]
    layers += [nn.Conv2d(512, 512, 3, 1, 1)]
    layers += [nn.Conv2d(512, 512, 3, 1, 1)]
    layers += [nn.ReLU()]
    return layers

def norm(x, dim):
    squared_norm = (x ** 2).sum(dim=dim, keepdim=True)
    normed = x / torch.sqrt(squared_norm)
    return normed

def fuse_hsp(x, p,group_size=5):
    
    t = torch.zeros(group_size, x.size(1))
    for i in range(x.size(0)):
        tmp = x[i, :]
        if i == 0:
            nx = tmp.expand_as(t)
        else:
            nx = torch.cat(([nx, tmp.expand_as(t)]), dim=0)
    nx = nx.view(x.size(0)*group_size, x.size(1), 1, 1)
    y = nx.expand_as(p)
    return y


class Model(nn.Module):
    def __init__(self, device, base, incr_channel, incr_channel2, hsp1, hsp2, cls_m, cls, concat_r, concat_1, mask_branch, intra,demo_mode=False):
        super(Model, self).__init__()
        self.base = nn.ModuleList(base)
        self.sp1 = hsp1
        self.sp2 = hsp2
        self.cls_m = cls_m
        self.cls = cls
        self.incr_channel1 = nn.ModuleList(incr_channel)
        self.incr_channel2 = nn.ModuleList(incr_channel2)
        self.concat4 = nn.ModuleList(concat_r)
        self.concat3 = nn.ModuleList(concat_r)
        self.concat2 = nn.ModuleList(concat_r)
        self.concat1 = nn.ModuleList(concat_1)
        self.mask = nn.ModuleList(mask_branch)
        self.extract = [13, 23, 33, 43]
        self.device = device
        self.group_size = 5
        self.intra = nn.ModuleList(intra)
        self.transformer_1=Transformer(512,4,4,782,group=self.group_size)
        self.transformer_2=Transformer(512,4,4,782,group=self.group_size)
        self.demo_mode=demo_mode

    def forward(self, x):
        # backbone, p is the pool2, 3, 4, 5
        p = list()
        for k in range(len(self.base)):
            x = self.base[k](x)
            if k in self.extract:
                p.append(x)
        
        
        # increase the channel
        newp = list()
        newp_T=list()
        for k in range(len(p)):
            np = self.incr_channel1[k](p[k])
            np = self.incr_channel2[k](np)
            newp.append(self.incr_channel2[4](np))
            if k==3:
              tmp_newp_T3=self.transformer_1(newp[k])
              newp_T.append(tmp_newp_T3)
            if k==2:
              newp_T.append(self.transformer_2(newp[k]))
            if k<2:
              newp_T.append(None)


        # intra-MLP
        point = newp[3].view(newp[3].size(0), newp[3].size(1), -1)
        point = point.permute(0,2,1)

        idx = knn_l2(self.device, point, 4, 1)
        feat=idx
        new_point = index_points(self.device, point,idx)

        group_point = new_point.permute(0, 3, 2, 1)
        group_point = self.intra[0](group_point)
        group_point = torch.max(group_point, 2)[0]  # [B, D', S]

        intra_mask = group_point.view(group_point.size(0), group_point.size(1), 7, 7)
        intra_mask = intra_mask + newp[3]
        
        spa_mask = self.intra[1](intra_mask)


        x = newp[3]
        x = self.sp1(x)
        x = x.view(-1, x.size(1), x.size(2) * x.size(3))
        x = torch.bmm(x, x.transpose(1, 2))
        x = x.view(-1, x.size(1) * x.size(2))
        x = x.view(x.size(0) // self.group_size, x.size(1), -1, 1)
        x = self.sp2(x)
        x = x.view(-1, x.size(1), x.size(2) * x.size(3))
        x = torch.bmm(x, x.transpose(1, 2))
        x = x.view(-1, x.size(1) * x.size(2))

        #cls pred
        cls_modulated_vector = self.cls_m(x)
        cls_pred = self.cls(cls_modulated_vector)

        #semantic and spatial modulator
        g1 = fuse_hsp(cls_modulated_vector, newp[0],self.group_size)
        g2 = fuse_hsp(cls_modulated_vector, newp[1],self.group_size)
        g3 = fuse_hsp(cls_modulated_vector, newp[2],self.group_size)
        g4 = fuse_hsp(cls_modulated_vector, newp[3],self.group_size)

        spa_1 = F.interpolate(spa_mask, size=[g1.size(2), g1.size(3)], mode='bilinear')
        spa_1 = spa_1.expand_as(g1)
        spa_2 = F.interpolate(spa_mask, size=[g2.size(2), g2.size(3)], mode='bilinear')
        spa_2 = spa_2.expand_as(g2)
        spa_3 = F.interpolate(spa_mask, size=[g3.size(2), g3.size(3)], mode='bilinear')
        spa_3 = spa_3.expand_as(g3)
        spa_4 = F.interpolate(spa_mask, size=[g4.size(2), g4.size(3)], mode='bilinear')
        spa_4 = spa_4.expand_as(g4)
        
        y4 = newp_T[3] * g4 + spa_4
        for k in range(len(self.concat4)):
            y4 = self.concat4[k](y4)
        
        y3 = newp_T[2] * g3 + spa_3
        
        for k in range(len(self.concat3)):
            y3 = self.concat3[k](y3)
            if k == 1:
                y3 = y3 + y4
        
        y2 = newp[1] * g2 + spa_2
        
        #print(y2.shape)
        
        for k in range(len(self.concat2)):
            y2 = self.concat2[k](y2)
            if k == 1:
                y2 = y2 + y3
        y1 = newp[0] * g1 + spa_1

        for k in range(len(self.concat1)):
            y1 = self.concat1[k](y1)
            if k == 1:
                y1 = y1 + y2
        y = y1
        if self.demo_mode:
            tmp=F.interpolate(y1, size=[14,14], mode='bilinear')
            tmp=tmp.permute(0,2,3,1).contiguous().reshape(tmp.shape[0]*tmp.shape[2]*tmp.shape[3],tmp.shape[1])
            tmp=tmp/torch.norm(tmp,p=2,dim=1).unsqueeze(1)
            feat2=(tmp@tmp.t())
            feat=F.interpolate(y, size=[14,14], mode='bilinear')
        
        # decoder
        for k in range(len(self.mask)):
            
            y = self.mask[k](y)
        mask_pred = y[:, 0, :, :]
        if self.demo_mode:
            return cls_pred, mask_pred,feat,feat2
        else:
            return cls_pred, mask_pred



# build the whole network
def build_model(device,demo_mode=False):
    return Model(device,
                 vgg(base['vgg']),
                 incr_channel(),
                 incr_channel2(),
                 hsp(512, 64),
                 hsp(64**2, 32),
                 cls_modulation_branch(32**2, 512),
                 cls_branch(512, 78),
                 concat_r(),
                 concat_1(),
                 mask_branch(),
                 intra(),demo_mode)

# weight init
def xavier(param):
    init.xavier_uniform_(param)

def weights_init(m):
    if isinstance(m, nn.Conv2d):
        xavier(m.weight.data)
    elif isinstance(m, nn.BatchNorm2d):
        init.constant_(m.weight, 1)
        init.constant_(m.bias, 0)

'''import os
os.environ['CUDA_VISIBLE_DEVICES']='6'
gpu_id='cuda:0'
device = torch.device(gpu_id)
nt=build_model(device).to(device)
it=2
bs=1
gs=5
sum=0
with torch.no_grad():
  for i in range(it):
    A=torch.rand(bs*gs,3,448,256).cuda()
    A=A*2-1
    start=time.time()
    nt(A)
    sum+=time.time()-start
print(sum/bs/gs/it)'''