File size: 9,217 Bytes
c83be2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import torch
from torch import nn
from torch.nn import init
import torch.nn.functional as F
from torch.optim import Adam
import numpy
from einops import rearrange
import time
from transformer import Transformer
from Intra_MLP import index_points,knn_l2
# vgg choice
base = {'vgg': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M']}
# vgg16
def vgg(cfg, i=3, batch_norm=True):
layers = []
in_channels = i
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return layers
def hsp(in_channel, out_channel):
layers = nn.Sequential(nn.Conv2d(in_channel, out_channel, 1, 1),
nn.ReLU())
return layers
def cls_modulation_branch(in_channel, hiden_channel):
layers = nn.Sequential(nn.Linear(in_channel, hiden_channel),
nn.ReLU())
return layers
def cls_branch(hiden_channel, class_num):
layers = nn.Sequential(nn.Linear(hiden_channel, class_num),
nn.Sigmoid())
return layers
def intra():
layers = []
layers += [nn.Conv2d(512, 512, 1, 1)]
layers += [nn.Sigmoid()]
return layers
def concat_r():
layers = []
layers += [nn.Conv2d(512, 512, 1, 1)]
layers += [nn.ReLU()]
layers += [nn.Conv2d(512, 512, 3, 1, 1)]
layers += [nn.ReLU()]
layers += [nn.ConvTranspose2d(512, 512, 4, 2, 1)]
return layers
def concat_1():
layers = []
layers += [nn.Conv2d(512, 512, 1, 1)]
layers += [nn.ReLU()]
layers += [nn.Conv2d(512, 512, 3, 1, 1)]
layers += [nn.ReLU()]
return layers
def mask_branch():
layers = []
layers += [nn.Conv2d(512, 2, 3, 1, 1)]
layers += [nn.ConvTranspose2d(2, 2, 8, 4, 2)]
layers += [nn.Softmax2d()]
return layers
def incr_channel():
layers = []
layers += [nn.Conv2d(128, 512, 3, 1, 1)]
layers += [nn.Conv2d(256, 512, 3, 1, 1)]
layers += [nn.Conv2d(512, 512, 3, 1, 1)]
layers += [nn.Conv2d(512, 512, 3, 1, 1)]
return layers
def incr_channel2():
layers = []
layers += [nn.Conv2d(512, 512, 3, 1, 1)]
layers += [nn.Conv2d(512, 512, 3, 1, 1)]
layers += [nn.Conv2d(512, 512, 3, 1, 1)]
layers += [nn.Conv2d(512, 512, 3, 1, 1)]
layers += [nn.ReLU()]
return layers
def norm(x, dim):
squared_norm = (x ** 2).sum(dim=dim, keepdim=True)
normed = x / torch.sqrt(squared_norm)
return normed
def fuse_hsp(x, p,group_size=5):
t = torch.zeros(group_size, x.size(1))
for i in range(x.size(0)):
tmp = x[i, :]
if i == 0:
nx = tmp.expand_as(t)
else:
nx = torch.cat(([nx, tmp.expand_as(t)]), dim=0)
nx = nx.view(x.size(0)*group_size, x.size(1), 1, 1)
y = nx.expand_as(p)
return y
class Model(nn.Module):
def __init__(self, device, base, incr_channel, incr_channel2, hsp1, hsp2, cls_m, cls, concat_r, concat_1, mask_branch, intra,demo_mode=False):
super(Model, self).__init__()
self.base = nn.ModuleList(base)
self.sp1 = hsp1
self.sp2 = hsp2
self.cls_m = cls_m
self.cls = cls
self.incr_channel1 = nn.ModuleList(incr_channel)
self.incr_channel2 = nn.ModuleList(incr_channel2)
self.concat4 = nn.ModuleList(concat_r)
self.concat3 = nn.ModuleList(concat_r)
self.concat2 = nn.ModuleList(concat_r)
self.concat1 = nn.ModuleList(concat_1)
self.mask = nn.ModuleList(mask_branch)
self.extract = [13, 23, 33, 43]
self.device = device
self.group_size = 5
self.intra = nn.ModuleList(intra)
self.transformer_1=Transformer(512,4,4,782,group=self.group_size)
self.transformer_2=Transformer(512,4,4,782,group=self.group_size)
self.demo_mode=demo_mode
def forward(self, x):
# backbone, p is the pool2, 3, 4, 5
p = list()
for k in range(len(self.base)):
x = self.base[k](x)
if k in self.extract:
p.append(x)
# increase the channel
newp = list()
newp_T=list()
for k in range(len(p)):
np = self.incr_channel1[k](p[k])
np = self.incr_channel2[k](np)
newp.append(self.incr_channel2[4](np))
if k==3:
tmp_newp_T3=self.transformer_1(newp[k])
newp_T.append(tmp_newp_T3)
if k==2:
newp_T.append(self.transformer_2(newp[k]))
if k<2:
newp_T.append(None)
# intra-MLP
point = newp[3].view(newp[3].size(0), newp[3].size(1), -1)
point = point.permute(0,2,1)
idx = knn_l2(self.device, point, 4, 1)
feat=idx
new_point = index_points(self.device, point,idx)
group_point = new_point.permute(0, 3, 2, 1)
group_point = self.intra[0](group_point)
group_point = torch.max(group_point, 2)[0] # [B, D', S]
intra_mask = group_point.view(group_point.size(0), group_point.size(1), 7, 7)
intra_mask = intra_mask + newp[3]
spa_mask = self.intra[1](intra_mask)
x = newp[3]
x = self.sp1(x)
x = x.view(-1, x.size(1), x.size(2) * x.size(3))
x = torch.bmm(x, x.transpose(1, 2))
x = x.view(-1, x.size(1) * x.size(2))
x = x.view(x.size(0) // self.group_size, x.size(1), -1, 1)
x = self.sp2(x)
x = x.view(-1, x.size(1), x.size(2) * x.size(3))
x = torch.bmm(x, x.transpose(1, 2))
x = x.view(-1, x.size(1) * x.size(2))
#cls pred
cls_modulated_vector = self.cls_m(x)
cls_pred = self.cls(cls_modulated_vector)
#semantic and spatial modulator
g1 = fuse_hsp(cls_modulated_vector, newp[0],self.group_size)
g2 = fuse_hsp(cls_modulated_vector, newp[1],self.group_size)
g3 = fuse_hsp(cls_modulated_vector, newp[2],self.group_size)
g4 = fuse_hsp(cls_modulated_vector, newp[3],self.group_size)
spa_1 = F.interpolate(spa_mask, size=[g1.size(2), g1.size(3)], mode='bilinear')
spa_1 = spa_1.expand_as(g1)
spa_2 = F.interpolate(spa_mask, size=[g2.size(2), g2.size(3)], mode='bilinear')
spa_2 = spa_2.expand_as(g2)
spa_3 = F.interpolate(spa_mask, size=[g3.size(2), g3.size(3)], mode='bilinear')
spa_3 = spa_3.expand_as(g3)
spa_4 = F.interpolate(spa_mask, size=[g4.size(2), g4.size(3)], mode='bilinear')
spa_4 = spa_4.expand_as(g4)
y4 = newp_T[3] * g4 + spa_4
for k in range(len(self.concat4)):
y4 = self.concat4[k](y4)
y3 = newp_T[2] * g3 + spa_3
for k in range(len(self.concat3)):
y3 = self.concat3[k](y3)
if k == 1:
y3 = y3 + y4
y2 = newp[1] * g2 + spa_2
#print(y2.shape)
for k in range(len(self.concat2)):
y2 = self.concat2[k](y2)
if k == 1:
y2 = y2 + y3
y1 = newp[0] * g1 + spa_1
for k in range(len(self.concat1)):
y1 = self.concat1[k](y1)
if k == 1:
y1 = y1 + y2
y = y1
if self.demo_mode:
tmp=F.interpolate(y1, size=[14,14], mode='bilinear')
tmp=tmp.permute(0,2,3,1).contiguous().reshape(tmp.shape[0]*tmp.shape[2]*tmp.shape[3],tmp.shape[1])
tmp=tmp/torch.norm(tmp,p=2,dim=1).unsqueeze(1)
feat2=(tmp@tmp.t())
feat=F.interpolate(y, size=[14,14], mode='bilinear')
# decoder
for k in range(len(self.mask)):
y = self.mask[k](y)
mask_pred = y[:, 0, :, :]
if self.demo_mode:
return cls_pred, mask_pred,feat,feat2
else:
return cls_pred, mask_pred
# build the whole network
def build_model(device,demo_mode=False):
return Model(device,
vgg(base['vgg']),
incr_channel(),
incr_channel2(),
hsp(512, 64),
hsp(64**2, 32),
cls_modulation_branch(32**2, 512),
cls_branch(512, 78),
concat_r(),
concat_1(),
mask_branch(),
intra(),demo_mode)
# weight init
def xavier(param):
init.xavier_uniform_(param)
def weights_init(m):
if isinstance(m, nn.Conv2d):
xavier(m.weight.data)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
'''import os
os.environ['CUDA_VISIBLE_DEVICES']='6'
gpu_id='cuda:0'
device = torch.device(gpu_id)
nt=build_model(device).to(device)
it=2
bs=1
gs=5
sum=0
with torch.no_grad():
for i in range(it):
A=torch.rand(bs*gs,3,448,256).cuda()
A=A*2-1
start=time.time()
nt(A)
sum+=time.time()-start
print(sum/bs/gs/it)'''
|