multiclass-metrics / app_6class.py
djindjin's picture
3 class
8ab3021
import gradio as gr
import pandas as pd
import numpy as np
num_labels = 6
headers = ["Benign","GG1", "GG2", "GG3", "GG4", "GG5"]
default_weights = [[0,3,5,5,5,5],
[1,0,1,3,5,5],
[3,1,0,1,5,5],
[3,3,1,0,5,5],
[5,5,5,5,0,1],
[5,5,5,5,1,0]]
example_conf_mats = [
pd.DataFrame([
[80,0,0,0,0,0],
[20,80,0,0,0,0],
[0,20,80,20,0,0],
[0,0,20,80,0,0],
[0,0,0,0,80,20],
[0,0,0,0,20,80]],columns=headers),
pd.DataFrame([
[80,0,0,0,0,0],
[15,80,10,0,0,0],
[5,15,80,15,0,0],
[0,5,10,80,10,10],
[0,0,0,5,80,10],
[0,0,0,0,10,80]],columns=headers),
pd.DataFrame([
[80,10, 3, 0, 0, 0],
[10,80, 7, 5, 3, 0],
[ 7, 7,80,10, 5, 3],
[ 3, 3, 7,80, 7, 7],
[ 0, 0, 3, 5,80,10],
[ 0, 0, 0, 0, 5,80]],columns=headers),
pd.DataFrame([
[80,0,0,0,10,10],
[0,80,0,0,10,10],
[0,0,80,0,0,0],
[0,0,0,80,0,0],
[10,10,10,10,80,0],
[10,10,10,10,0,80]],columns=headers)
]
def submit_vals(*argv):
argv = list(argv)
weights = np.zeros((num_labels, num_labels))
for i in range(num_labels):
for j in range(num_labels):
if i != j:
weights[i][j] = argv.pop(0)
weights_df = pd.DataFrame(weights, columns=headers)
return weights_df
def get_acc(input_df, weights_df):
input_df = input_df.astype(int)
total = sum(sum(np.array(input_df)))
diag_total = sum(np.diag(input_df))
non_diag_total = total - diag_total
accuracy = 100 * diag_total / total
if non_diag_total == 0:
severity = 0
else:
severity = sum(sum(np.array(input_df.multiply(weights_df)))) / non_diag_total
return accuracy, severity
with gr.Blocks() as demo:
with gr.Tab("Error severity matrix"):
with gr.Row():
with gr.Column():
sliders = []
for i in range(num_labels):
for j in range(num_labels):
if i != j:
sliders.append(gr.Slider(1, 5, value=default_weights[i][j], step=1, label="Impact of misclassifying "+ headers[j] + " as " + headers[i]))
with gr.Column():
output_err_mat = gr.Dataframe(value = default_weights, datatype = "number", row_count = (num_labels, "fixed"), col_count=(num_labels,"fixed"), label="Error Severity Matrix", interactive=0, headers=headers)
refresh_btn = gr.Button("Refresh")
refresh_btn.click(submit_vals, inputs=sliders, outputs=output_err_mat)
with gr.Tab("Calculate accuracy and Error Severity"):
with gr.Row():
with gr.Column():
conf_df = gr.Dataframe(datatype = "number", row_count = (num_labels, "fixed"), col_count=(num_labels,"fixed"), label="Confusion Matrix", interactive=1, headers=headers)
submit_btn = gr.Button("Submit")
examples = gr.Examples(examples=example_conf_mats, inputs=[conf_df])
with gr.Column():
outputs = [gr.Textbox(label="Accuracy"), gr.Textbox(label="Error Severity")]
submit_btn.click(fn=get_acc, inputs=[conf_df,output_err_mat], outputs=outputs)
demo.launch()