import gradio as gr import pandas as pd import numpy as np num_labels = 6 headers = ["Benign","GG1", "GG2", "GG3", "GG4", "GG5"] default_weights = [[0,3,5,5,5,5], [1,0,1,3,5,5], [3,1,0,1,5,5], [3,3,1,0,5,5], [5,5,5,5,0,1], [5,5,5,5,1,0]] example_conf_mats = [ pd.DataFrame([ [80,0,0,0,0,0], [20,80,0,0,0,0], [0,20,80,20,0,0], [0,0,20,80,0,0], [0,0,0,0,80,20], [0,0,0,0,20,80]],columns=headers), pd.DataFrame([ [80,0,0,0,0,0], [15,80,10,0,0,0], [5,15,80,15,0,0], [0,5,10,80,10,10], [0,0,0,5,80,10], [0,0,0,0,10,80]],columns=headers), pd.DataFrame([ [80,10, 3, 0, 0, 0], [10,80, 7, 5, 3, 0], [ 7, 7,80,10, 5, 3], [ 3, 3, 7,80, 7, 7], [ 0, 0, 3, 5,80,10], [ 0, 0, 0, 0, 5,80]],columns=headers), pd.DataFrame([ [80,0,0,0,10,10], [0,80,0,0,10,10], [0,0,80,0,0,0], [0,0,0,80,0,0], [10,10,10,10,80,0], [10,10,10,10,0,80]],columns=headers) ] def submit_vals(*argv): argv = list(argv) weights = np.zeros((num_labels, num_labels)) for i in range(num_labels): for j in range(num_labels): if i != j: weights[i][j] = argv.pop(0) weights_df = pd.DataFrame(weights, columns=headers) return weights_df def get_acc(input_df, weights_df): input_df = input_df.astype(int) total = sum(sum(np.array(input_df))) diag_total = sum(np.diag(input_df)) non_diag_total = total - diag_total accuracy = 100 * diag_total / total if non_diag_total == 0: severity = 0 else: severity = sum(sum(np.array(input_df.multiply(weights_df)))) / non_diag_total return accuracy, severity with gr.Blocks() as demo: with gr.Tab("Error severity matrix"): with gr.Row(): with gr.Column(): sliders = [] for i in range(num_labels): for j in range(num_labels): if i != j: sliders.append(gr.Slider(1, 5, value=default_weights[i][j], step=1, label="Impact of misclassifying "+ headers[j] + " as " + headers[i])) with gr.Column(): output_err_mat = gr.Dataframe(value = default_weights, datatype = "number", row_count = (num_labels, "fixed"), col_count=(num_labels,"fixed"), label="Error Severity Matrix", interactive=0, headers=headers) refresh_btn = gr.Button("Refresh") refresh_btn.click(submit_vals, inputs=sliders, outputs=output_err_mat) with gr.Tab("Calculate accuracy and Error Severity"): with gr.Row(): with gr.Column(): conf_df = gr.Dataframe(datatype = "number", row_count = (num_labels, "fixed"), col_count=(num_labels,"fixed"), label="Confusion Matrix", interactive=1, headers=headers) submit_btn = gr.Button("Submit") examples = gr.Examples(examples=example_conf_mats, inputs=[conf_df]) with gr.Column(): outputs = [gr.Textbox(label="Accuracy"), gr.Textbox(label="Error Severity")] submit_btn.click(fn=get_acc, inputs=[conf_df,output_err_mat], outputs=outputs) demo.launch()