djindjin commited on
Commit
8ab3021
·
1 Parent(s): a248cf3
Files changed (2) hide show
  1. app.py +15 -39
  2. app_3class.py → app_6class.py +39 -15
app.py CHANGED
@@ -2,43 +2,19 @@ import gradio as gr
2
  import pandas as pd
3
  import numpy as np
4
 
5
- num_labels = 6
6
- headers = ["Benign","GG1", "GG2", "GG3", "GG4", "GG5"]
7
- default_weights = [[0,3,5,5,5,5],
8
- [1,0,1,3,5,5],
9
- [3,1,0,1,5,5],
10
- [3,3,1,0,5,5],
11
- [5,5,5,5,0,1],
12
- [5,5,5,5,1,0]]
13
  example_conf_mats = [
14
- pd.DataFrame([
15
- [80,0,0,0,0,0],
16
- [20,80,0,0,0,0],
17
- [0,20,80,20,0,0],
18
- [0,0,20,80,0,0],
19
- [0,0,0,0,80,20],
20
- [0,0,0,0,20,80]],columns=headers),
21
- pd.DataFrame([
22
- [80,0,0,0,0,0],
23
- [15,80,10,0,0,0],
24
- [5,15,80,15,0,0],
25
- [0,5,10,80,10,10],
26
- [0,0,0,5,80,10],
27
- [0,0,0,0,10,80]],columns=headers),
28
- pd.DataFrame([
29
- [80,10, 3, 0, 0, 0],
30
- [10,80, 7, 5, 3, 0],
31
- [ 7, 7,80,10, 5, 3],
32
- [ 3, 3, 7,80, 7, 7],
33
- [ 0, 0, 3, 5,80,10],
34
- [ 0, 0, 0, 0, 5,80]],columns=headers),
35
- pd.DataFrame([
36
- [80,0,0,0,10,10],
37
- [0,80,0,0,10,10],
38
- [0,0,80,0,0,0],
39
- [0,0,0,80,0,0],
40
- [10,10,10,10,80,0],
41
- [10,10,10,10,0,80]],columns=headers)
42
  ]
43
 
44
  def submit_vals(*argv):
@@ -71,11 +47,11 @@ with gr.Blocks() as demo:
71
  for i in range(num_labels):
72
  for j in range(num_labels):
73
  if i != j:
74
- sliders.append(gr.Slider(1, 5, value=default_weights[i][j], step=1, label="Impact of misclassifying "+ headers[j] + " as " + headers[i]))
 
75
  with gr.Column():
76
  output_err_mat = gr.Dataframe(value = default_weights, datatype = "number", row_count = (num_labels, "fixed"), col_count=(num_labels,"fixed"), label="Error Severity Matrix", interactive=0, headers=headers)
77
- refresh_btn = gr.Button("Refresh")
78
- refresh_btn.click(submit_vals, inputs=sliders, outputs=output_err_mat)
79
  with gr.Tab("Calculate accuracy and Error Severity"):
80
  with gr.Row():
81
  with gr.Column():
 
2
  import pandas as pd
3
  import numpy as np
4
 
5
+ num_labels = 3
6
+ headers = ["Benign","C1","C2"]
7
+ default_weights = pd.DataFrame([[0,1,2],[1,0,1],[2,1,0]],columns=headers)
 
 
 
 
 
8
  example_conf_mats = [
9
+ pd.DataFrame([[80,10,0],
10
+ [20,80,20],
11
+ [0,10,80]],columns=headers),
12
+ pd.DataFrame([[80,10,10],
13
+ [10,80,10],
14
+ [10,10,80]],columns=headers),
15
+ pd.DataFrame([[80,10,20],
16
+ [0,80,0],
17
+ [20,10,80]],columns=headers),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  ]
19
 
20
  def submit_vals(*argv):
 
47
  for i in range(num_labels):
48
  for j in range(num_labels):
49
  if i != j:
50
+ sliders.append(gr.Slider(1, 5, value=np.abs(i-j), step=1, label="Impact of misclassifying "+ headers[j] + " as " + headers[i]))
51
+ submit_btn = gr.Button("Submit")
52
  with gr.Column():
53
  output_err_mat = gr.Dataframe(value = default_weights, datatype = "number", row_count = (num_labels, "fixed"), col_count=(num_labels,"fixed"), label="Error Severity Matrix", interactive=0, headers=headers)
54
+ submit_btn.click(submit_vals, inputs=sliders, outputs=output_err_mat)
 
55
  with gr.Tab("Calculate accuracy and Error Severity"):
56
  with gr.Row():
57
  with gr.Column():
app_3class.py → app_6class.py RENAMED
@@ -2,19 +2,43 @@ import gradio as gr
2
  import pandas as pd
3
  import numpy as np
4
 
5
- num_labels = 3
6
- headers = ["Benign","C1","C2"]
7
- default_weights = pd.DataFrame([[0,1,2],[1,0,1],[2,1,0]],columns=headers)
 
 
 
 
 
8
  example_conf_mats = [
9
- pd.DataFrame([[80,10,0],
10
- [20,80,20],
11
- [0,10,80]],columns=headers),
12
- pd.DataFrame([[80,10,10],
13
- [10,80,10],
14
- [10,10,80]],columns=headers),
15
- pd.DataFrame([[80,10,20],
16
- [0,80,0],
17
- [20,10,80]],columns=headers),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  ]
19
 
20
  def submit_vals(*argv):
@@ -47,11 +71,11 @@ with gr.Blocks() as demo:
47
  for i in range(num_labels):
48
  for j in range(num_labels):
49
  if i != j:
50
- sliders.append(gr.Slider(1, 5, value=np.abs(i-j), step=1, label="Impact of misclassifying "+ headers[j] + " as " + headers[i]))
51
- submit_btn = gr.Button("Submit")
52
  with gr.Column():
53
  output_err_mat = gr.Dataframe(value = default_weights, datatype = "number", row_count = (num_labels, "fixed"), col_count=(num_labels,"fixed"), label="Error Severity Matrix", interactive=0, headers=headers)
54
- submit_btn.click(submit_vals, inputs=sliders, outputs=output_err_mat)
 
55
  with gr.Tab("Calculate accuracy and Error Severity"):
56
  with gr.Row():
57
  with gr.Column():
 
2
  import pandas as pd
3
  import numpy as np
4
 
5
+ num_labels = 6
6
+ headers = ["Benign","GG1", "GG2", "GG3", "GG4", "GG5"]
7
+ default_weights = [[0,3,5,5,5,5],
8
+ [1,0,1,3,5,5],
9
+ [3,1,0,1,5,5],
10
+ [3,3,1,0,5,5],
11
+ [5,5,5,5,0,1],
12
+ [5,5,5,5,1,0]]
13
  example_conf_mats = [
14
+ pd.DataFrame([
15
+ [80,0,0,0,0,0],
16
+ [20,80,0,0,0,0],
17
+ [0,20,80,20,0,0],
18
+ [0,0,20,80,0,0],
19
+ [0,0,0,0,80,20],
20
+ [0,0,0,0,20,80]],columns=headers),
21
+ pd.DataFrame([
22
+ [80,0,0,0,0,0],
23
+ [15,80,10,0,0,0],
24
+ [5,15,80,15,0,0],
25
+ [0,5,10,80,10,10],
26
+ [0,0,0,5,80,10],
27
+ [0,0,0,0,10,80]],columns=headers),
28
+ pd.DataFrame([
29
+ [80,10, 3, 0, 0, 0],
30
+ [10,80, 7, 5, 3, 0],
31
+ [ 7, 7,80,10, 5, 3],
32
+ [ 3, 3, 7,80, 7, 7],
33
+ [ 0, 0, 3, 5,80,10],
34
+ [ 0, 0, 0, 0, 5,80]],columns=headers),
35
+ pd.DataFrame([
36
+ [80,0,0,0,10,10],
37
+ [0,80,0,0,10,10],
38
+ [0,0,80,0,0,0],
39
+ [0,0,0,80,0,0],
40
+ [10,10,10,10,80,0],
41
+ [10,10,10,10,0,80]],columns=headers)
42
  ]
43
 
44
  def submit_vals(*argv):
 
71
  for i in range(num_labels):
72
  for j in range(num_labels):
73
  if i != j:
74
+ sliders.append(gr.Slider(1, 5, value=default_weights[i][j], step=1, label="Impact of misclassifying "+ headers[j] + " as " + headers[i]))
 
75
  with gr.Column():
76
  output_err_mat = gr.Dataframe(value = default_weights, datatype = "number", row_count = (num_labels, "fixed"), col_count=(num_labels,"fixed"), label="Error Severity Matrix", interactive=0, headers=headers)
77
+ refresh_btn = gr.Button("Refresh")
78
+ refresh_btn.click(submit_vals, inputs=sliders, outputs=output_err_mat)
79
  with gr.Tab("Calculate accuracy and Error Severity"):
80
  with gr.Row():
81
  with gr.Column():