Spaces:
Runtime error
Runtime error
3 class
Browse files- app.py +15 -39
- app_3class.py → app_6class.py +39 -15
app.py
CHANGED
@@ -2,43 +2,19 @@ import gradio as gr
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
|
5 |
-
num_labels =
|
6 |
-
headers = ["Benign","
|
7 |
-
default_weights = [[0,
|
8 |
-
[1,0,1,3,5,5],
|
9 |
-
[3,1,0,1,5,5],
|
10 |
-
[3,3,1,0,5,5],
|
11 |
-
[5,5,5,5,0,1],
|
12 |
-
[5,5,5,5,1,0]]
|
13 |
example_conf_mats = [
|
14 |
-
pd.DataFrame([
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
[15,80,10,0,0,0],
|
24 |
-
[5,15,80,15,0,0],
|
25 |
-
[0,5,10,80,10,10],
|
26 |
-
[0,0,0,5,80,10],
|
27 |
-
[0,0,0,0,10,80]],columns=headers),
|
28 |
-
pd.DataFrame([
|
29 |
-
[80,10, 3, 0, 0, 0],
|
30 |
-
[10,80, 7, 5, 3, 0],
|
31 |
-
[ 7, 7,80,10, 5, 3],
|
32 |
-
[ 3, 3, 7,80, 7, 7],
|
33 |
-
[ 0, 0, 3, 5,80,10],
|
34 |
-
[ 0, 0, 0, 0, 5,80]],columns=headers),
|
35 |
-
pd.DataFrame([
|
36 |
-
[80,0,0,0,10,10],
|
37 |
-
[0,80,0,0,10,10],
|
38 |
-
[0,0,80,0,0,0],
|
39 |
-
[0,0,0,80,0,0],
|
40 |
-
[10,10,10,10,80,0],
|
41 |
-
[10,10,10,10,0,80]],columns=headers)
|
42 |
]
|
43 |
|
44 |
def submit_vals(*argv):
|
@@ -71,11 +47,11 @@ with gr.Blocks() as demo:
|
|
71 |
for i in range(num_labels):
|
72 |
for j in range(num_labels):
|
73 |
if i != j:
|
74 |
-
sliders.append(gr.Slider(1, 5, value=
|
|
|
75 |
with gr.Column():
|
76 |
output_err_mat = gr.Dataframe(value = default_weights, datatype = "number", row_count = (num_labels, "fixed"), col_count=(num_labels,"fixed"), label="Error Severity Matrix", interactive=0, headers=headers)
|
77 |
-
|
78 |
-
refresh_btn.click(submit_vals, inputs=sliders, outputs=output_err_mat)
|
79 |
with gr.Tab("Calculate accuracy and Error Severity"):
|
80 |
with gr.Row():
|
81 |
with gr.Column():
|
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
|
5 |
+
num_labels = 3
|
6 |
+
headers = ["Benign","C1","C2"]
|
7 |
+
default_weights = pd.DataFrame([[0,1,2],[1,0,1],[2,1,0]],columns=headers)
|
|
|
|
|
|
|
|
|
|
|
8 |
example_conf_mats = [
|
9 |
+
pd.DataFrame([[80,10,0],
|
10 |
+
[20,80,20],
|
11 |
+
[0,10,80]],columns=headers),
|
12 |
+
pd.DataFrame([[80,10,10],
|
13 |
+
[10,80,10],
|
14 |
+
[10,10,80]],columns=headers),
|
15 |
+
pd.DataFrame([[80,10,20],
|
16 |
+
[0,80,0],
|
17 |
+
[20,10,80]],columns=headers),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
]
|
19 |
|
20 |
def submit_vals(*argv):
|
|
|
47 |
for i in range(num_labels):
|
48 |
for j in range(num_labels):
|
49 |
if i != j:
|
50 |
+
sliders.append(gr.Slider(1, 5, value=np.abs(i-j), step=1, label="Impact of misclassifying "+ headers[j] + " as " + headers[i]))
|
51 |
+
submit_btn = gr.Button("Submit")
|
52 |
with gr.Column():
|
53 |
output_err_mat = gr.Dataframe(value = default_weights, datatype = "number", row_count = (num_labels, "fixed"), col_count=(num_labels,"fixed"), label="Error Severity Matrix", interactive=0, headers=headers)
|
54 |
+
submit_btn.click(submit_vals, inputs=sliders, outputs=output_err_mat)
|
|
|
55 |
with gr.Tab("Calculate accuracy and Error Severity"):
|
56 |
with gr.Row():
|
57 |
with gr.Column():
|
app_3class.py → app_6class.py
RENAMED
@@ -2,19 +2,43 @@ import gradio as gr
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
|
5 |
-
num_labels =
|
6 |
-
headers = ["Benign","
|
7 |
-
default_weights =
|
|
|
|
|
|
|
|
|
|
|
8 |
example_conf_mats = [
|
9 |
-
pd.DataFrame([
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
]
|
19 |
|
20 |
def submit_vals(*argv):
|
@@ -47,11 +71,11 @@ with gr.Blocks() as demo:
|
|
47 |
for i in range(num_labels):
|
48 |
for j in range(num_labels):
|
49 |
if i != j:
|
50 |
-
sliders.append(gr.Slider(1, 5, value=
|
51 |
-
submit_btn = gr.Button("Submit")
|
52 |
with gr.Column():
|
53 |
output_err_mat = gr.Dataframe(value = default_weights, datatype = "number", row_count = (num_labels, "fixed"), col_count=(num_labels,"fixed"), label="Error Severity Matrix", interactive=0, headers=headers)
|
54 |
-
|
|
|
55 |
with gr.Tab("Calculate accuracy and Error Severity"):
|
56 |
with gr.Row():
|
57 |
with gr.Column():
|
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
|
5 |
+
num_labels = 6
|
6 |
+
headers = ["Benign","GG1", "GG2", "GG3", "GG4", "GG5"]
|
7 |
+
default_weights = [[0,3,5,5,5,5],
|
8 |
+
[1,0,1,3,5,5],
|
9 |
+
[3,1,0,1,5,5],
|
10 |
+
[3,3,1,0,5,5],
|
11 |
+
[5,5,5,5,0,1],
|
12 |
+
[5,5,5,5,1,0]]
|
13 |
example_conf_mats = [
|
14 |
+
pd.DataFrame([
|
15 |
+
[80,0,0,0,0,0],
|
16 |
+
[20,80,0,0,0,0],
|
17 |
+
[0,20,80,20,0,0],
|
18 |
+
[0,0,20,80,0,0],
|
19 |
+
[0,0,0,0,80,20],
|
20 |
+
[0,0,0,0,20,80]],columns=headers),
|
21 |
+
pd.DataFrame([
|
22 |
+
[80,0,0,0,0,0],
|
23 |
+
[15,80,10,0,0,0],
|
24 |
+
[5,15,80,15,0,0],
|
25 |
+
[0,5,10,80,10,10],
|
26 |
+
[0,0,0,5,80,10],
|
27 |
+
[0,0,0,0,10,80]],columns=headers),
|
28 |
+
pd.DataFrame([
|
29 |
+
[80,10, 3, 0, 0, 0],
|
30 |
+
[10,80, 7, 5, 3, 0],
|
31 |
+
[ 7, 7,80,10, 5, 3],
|
32 |
+
[ 3, 3, 7,80, 7, 7],
|
33 |
+
[ 0, 0, 3, 5,80,10],
|
34 |
+
[ 0, 0, 0, 0, 5,80]],columns=headers),
|
35 |
+
pd.DataFrame([
|
36 |
+
[80,0,0,0,10,10],
|
37 |
+
[0,80,0,0,10,10],
|
38 |
+
[0,0,80,0,0,0],
|
39 |
+
[0,0,0,80,0,0],
|
40 |
+
[10,10,10,10,80,0],
|
41 |
+
[10,10,10,10,0,80]],columns=headers)
|
42 |
]
|
43 |
|
44 |
def submit_vals(*argv):
|
|
|
71 |
for i in range(num_labels):
|
72 |
for j in range(num_labels):
|
73 |
if i != j:
|
74 |
+
sliders.append(gr.Slider(1, 5, value=default_weights[i][j], step=1, label="Impact of misclassifying "+ headers[j] + " as " + headers[i]))
|
|
|
75 |
with gr.Column():
|
76 |
output_err_mat = gr.Dataframe(value = default_weights, datatype = "number", row_count = (num_labels, "fixed"), col_count=(num_labels,"fixed"), label="Error Severity Matrix", interactive=0, headers=headers)
|
77 |
+
refresh_btn = gr.Button("Refresh")
|
78 |
+
refresh_btn.click(submit_vals, inputs=sliders, outputs=output_err_mat)
|
79 |
with gr.Tab("Calculate accuracy and Error Severity"):
|
80 |
with gr.Row():
|
81 |
with gr.Column():
|