Spaces:
Running
Running
File size: 14,476 Bytes
8146713 2b63853 8146713 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import re
import sys
import torch
from common.text.symbols import get_symbols, get_pad_idx
from common.utils import DefaultAttrDict, AttrDict
from fastpitch.model import FastPitch
from fastpitch.model_jit import FastPitchJIT
from hifigan.models import Generator
try:
from waveglow.model import WaveGlow
from waveglow import model as glow
from waveglow.denoiser import Denoiser
sys.modules['glow'] = glow
except ImportError:
print("WARNING: Couldn't import WaveGlow")
def parse_model_args(model_name, parser, add_help=False):
if model_name == 'FastPitch':
from fastpitch import arg_parser
return arg_parser.parse_fastpitch_args(parser, add_help)
elif model_name == 'HiFi-GAN':
from hifigan import arg_parser
return arg_parser.parse_hifigan_args(parser, add_help)
elif model_name == 'WaveGlow':
from waveglow.arg_parser import parse_waveglow_args
return parse_waveglow_args(parser, add_help)
else:
raise NotImplementedError(model_name)
def get_model(model_name, model_config, device, bn_uniform_init=False,
forward_is_infer=False, jitable=False):
"""Chooses a model based on name"""
del bn_uniform_init # unused (old name: uniform_initialize_bn_weight)
if model_name == 'FastPitch':
if jitable:
model = FastPitchJIT(**model_config)
else:
model = FastPitch(**model_config)
elif model_name == 'HiFi-GAN':
model = Generator(model_config)
elif model_name == 'WaveGlow':
model = WaveGlow(**model_config)
else:
raise NotImplementedError(model_name)
if forward_is_infer and hasattr(model, 'infer'):
model.forward = model.infer
return model.to(device)
def get_model_config(model_name, args, ckpt_config=None):
""" Get config needed to instantiate the model """
# Mark keys missing in `args` with an object (None is ambiguous)
_missing = object()
args = DefaultAttrDict(lambda: _missing, vars(args))
# `ckpt_config` is loaded from the checkpoint and has the priority
# `model_config` is based on args and fills empty slots in `ckpt_config`
if model_name == 'FastPitch':
print(get_symbols(args.symbol_set)) ############################
model_config = dict(
# io
n_mel_channels=args.n_mel_channels,
# symbols
n_symbols=(len(get_symbols(args.symbol_set))
if args.symbol_set is not _missing else _missing),
padding_idx=(get_pad_idx(args.symbol_set)
if args.symbol_set is not _missing else _missing),
symbols_embedding_dim=args.symbols_embedding_dim,
# input FFT
in_fft_n_layers=args.in_fft_n_layers,
in_fft_n_heads=args.in_fft_n_heads,
in_fft_d_head=args.in_fft_d_head,
in_fft_conv1d_kernel_size=args.in_fft_conv1d_kernel_size,
in_fft_conv1d_filter_size=args.in_fft_conv1d_filter_size,
in_fft_output_size=args.in_fft_output_size,
p_in_fft_dropout=args.p_in_fft_dropout,
p_in_fft_dropatt=args.p_in_fft_dropatt,
p_in_fft_dropemb=args.p_in_fft_dropemb,
# output FFT
out_fft_n_layers=args.out_fft_n_layers,
out_fft_n_heads=args.out_fft_n_heads,
out_fft_d_head=args.out_fft_d_head,
out_fft_conv1d_kernel_size=args.out_fft_conv1d_kernel_size,
out_fft_conv1d_filter_size=args.out_fft_conv1d_filter_size,
out_fft_output_size=args.out_fft_output_size,
p_out_fft_dropout=args.p_out_fft_dropout,
p_out_fft_dropatt=args.p_out_fft_dropatt,
p_out_fft_dropemb=args.p_out_fft_dropemb,
# duration predictor
dur_predictor_kernel_size=args.dur_predictor_kernel_size,
dur_predictor_filter_size=args.dur_predictor_filter_size,
p_dur_predictor_dropout=args.p_dur_predictor_dropout,
dur_predictor_n_layers=args.dur_predictor_n_layers,
# pitch predictor
pitch_predictor_kernel_size=args.pitch_predictor_kernel_size,
pitch_predictor_filter_size=args.pitch_predictor_filter_size,
p_pitch_predictor_dropout=args.p_pitch_predictor_dropout,
pitch_predictor_n_layers=args.pitch_predictor_n_layers,
# pitch conditioning
pitch_embedding_kernel_size=args.pitch_embedding_kernel_size,
# speakers parameters
n_speakers=args.n_speakers,
speaker_emb_weight=args.speaker_emb_weight,
n_languages=args.n_languages,
# energy predictor
energy_predictor_kernel_size=args.energy_predictor_kernel_size,
energy_predictor_filter_size=args.energy_predictor_filter_size,
p_energy_predictor_dropout=args.p_energy_predictor_dropout,
energy_predictor_n_layers=args.energy_predictor_n_layers,
# energy conditioning
energy_conditioning=args.energy_conditioning,
energy_embedding_kernel_size=args.energy_embedding_kernel_size,
)
elif model_name == 'HiFi-GAN':
if args.hifigan_config is not None:
assert ckpt_config is None, (
"Supplied --hifigan-config, but the checkpoint has a config. "
"Drop the flag or remove the config from the checkpoint file.")
print(f'HiFi-GAN: Reading model config from {args.hifigan_config}')
with open(args.hifigan_config) as f:
args = AttrDict(json.load(f))
model_config = dict(
# generator architecture
upsample_rates=args.upsample_rates,
upsample_kernel_sizes=args.upsample_kernel_sizes,
upsample_initial_channel=args.upsample_initial_channel,
resblock=args.resblock,
resblock_kernel_sizes=args.resblock_kernel_sizes,
resblock_dilation_sizes=args.resblock_dilation_sizes,
)
elif model_name == 'WaveGlow':
model_config = dict(
n_mel_channels=args.n_mel_channels,
n_flows=args.flows,
n_group=args.groups,
n_early_every=args.early_every,
n_early_size=args.early_size,
WN_config=dict(
n_layers=args.wn_layers,
kernel_size=args.wn_kernel_size,
n_channels=args.wn_channels
)
)
else:
raise NotImplementedError(model_name)
# Start with ckpt_config, and fill missing keys from model_config
final_config = {} if ckpt_config is None else ckpt_config.copy()
missing_keys = set(model_config.keys()) - set(final_config.keys())
final_config.update({k: model_config[k] for k in missing_keys})
# If there was a ckpt_config, it should have had all args
if ckpt_config is not None and len(missing_keys) > 0:
print(f'WARNING: Keys {missing_keys} missing from the loaded config; '
'using args instead.')
# NOTE: useful to debug the assertion error
#for k, v in final_config.items():
# if v is _missing:
# print(k)
assert all(v is not _missing for v in final_config.values()) ##########################################
return final_config
def get_model_train_setup(model_name, args):
""" Dump train setup for documentation purposes """
if model_name == 'FastPitch':
return dict()
elif model_name == 'HiFi-GAN':
return dict(
# audio
segment_size=args.segment_size,
filter_length=args.filter_length,
num_mels=args.num_mels,
hop_length=args.hop_length,
win_length=args.win_length,
sampling_rate=args.sampling_rate,
mel_fmin=args.mel_fmin,
mel_fmax=args.mel_fmax,
mel_fmax_loss=args.mel_fmax_loss,
max_wav_value=args.max_wav_value,
# other
seed=args.seed,
# optimization
base_lr=args.learning_rate,
lr_decay=args.lr_decay,
epochs_all=args.epochs,
)
elif model_name == 'WaveGlow':
return dict()
else:
raise NotImplementedError(model_name)
def load_model_from_ckpt(checkpoint_data, model, key='state_dict'):
if key is None:
return checkpoint_data['model'], None
sd = checkpoint_data[key]
sd = {re.sub('^module\.', '', k): v for k, v in sd.items()}
status = model.load_state_dict(sd, strict=False)
return model, status
def load_and_setup_model(model_name, parser, checkpoint, amp, device,
unk_args=[], forward_is_infer=False, jitable=False):
if checkpoint is not None:
#ckpt_data = torch.load(checkpoint)
ckpt_data = torch.load(checkpoint, map_location=device)
print(f'{model_name}: Loading {checkpoint}...')
ckpt_config = ckpt_data.get('config')
if ckpt_config is None:
print(f'{model_name}: No model config in the checkpoint; using args.')
else:
print(f'{model_name}: Found model config saved in the checkpoint.')
else:
ckpt_config = None
ckpt_data = {}
model_parser = parse_model_args(model_name, parser, add_help=False)
model_args, model_unk_args = model_parser.parse_known_args()
unk_args[:] = list(set(unk_args) & set(model_unk_args))
model_config = get_model_config(model_name, model_args, ckpt_config)
model = get_model(model_name, model_config, device,
forward_is_infer=forward_is_infer,
jitable=jitable)
if checkpoint is not None:
key = 'generator' if model_name == 'HiFi-GAN' else 'state_dict'
model, status = load_model_from_ckpt(ckpt_data, model, key)
missing = [] if status is None else status.missing_keys
unexpected = [] if status is None else status.unexpected_keys
# Attention is only used during training, we won't miss it
if model_name == 'FastPitch':
missing = [k for k in missing if not k.startswith('attention.')]
unexpected = [k for k in unexpected if not k.startswith('attention.')]
assert len(missing) == 0 and len(unexpected) == 0, (
f'Mismatched keys when loading parameters. Missing: {missing}, '
f'unexpected: {unexpected}.')
if model_name == "WaveGlow":
for k, m in model.named_modules():
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatability
model = model.remove_weightnorm(model)
elif model_name == 'HiFi-GAN':
assert model_args.hifigan_config is not None or ckpt_config is not None, (
'Use a HiFi-GAN checkpoint from NVIDIA DeepLearningExamples with '
'saved config or supply --hifigan-config <json_file>.')
model.remove_weight_norm()
if amp:
model.half()
model.eval()
return model.to(device), model_config, ckpt_data.get('train_setup', {})
def load_and_setup_ts_model(model_name, checkpoint, amp, device=None):
print(f'{model_name}: Loading TorchScript checkpoint {checkpoint}...')
model = torch.jit.load(checkpoint).eval()
if device is not None:
model = model.to(device)
if amp:
model.half()
elif next(model.parameters()).dtype == torch.float16:
raise ValueError('Trying to load FP32 model,'
'TS checkpoint is in FP16 precision.')
return model
def convert_ts_to_trt(model_name, ts_model, parser, amp, unk_args=[]):
trt_parser = _parse_trt_compilation_args(model_name, parser, add_help=False)
trt_args, trt_unk_args = trt_parser.parse_known_args()
unk_args[:] = list(set(unk_args) & set(trt_unk_args))
if model_name == 'HiFi-GAN':
return _convert_ts_to_trt_hifigan(
ts_model, amp, trt_args.trt_min_opt_max_batch,
trt_args.trt_min_opt_max_hifigan_length)
else:
raise NotImplementedError
def _parse_trt_compilation_args(model_name, parent, add_help=False):
"""
Parse model and inference specific commandline arguments.
"""
parser = argparse.ArgumentParser(parents=[parent], add_help=add_help,
allow_abbrev=False)
trt = parser.add_argument_group(f'{model_name} Torch-TensorRT compilation parameters')
trt.add_argument('--trt-min-opt-max-batch', nargs=3, type=int,
default=(1, 8, 16),
help='Torch-TensorRT min, optimal and max batch size')
if model_name == 'HiFi-GAN':
trt.add_argument('--trt-min-opt-max-hifigan-length', nargs=3, type=int,
default=(100, 800, 1200),
help='Torch-TensorRT min, optimal and max audio length (in frames)')
return parser
def _convert_ts_to_trt_hifigan(ts_model, amp, trt_min_opt_max_batch,
trt_min_opt_max_hifigan_length, num_mels=80):
import torch_tensorrt
trt_dtype = torch.half if amp else torch.float
print(f'Torch TensorRT: compiling HiFi-GAN for dtype {trt_dtype}.')
min_shp, opt_shp, max_shp = zip(trt_min_opt_max_batch,
(num_mels,) * 3,
trt_min_opt_max_hifigan_length)
compile_settings = {
"inputs": [torch_tensorrt.Input(
min_shape=min_shp,
opt_shape=opt_shp,
max_shape=max_shp,
dtype=trt_dtype,
)],
"enabled_precisions": {trt_dtype},
"require_full_compilation": True,
}
trt_model = torch_tensorrt.compile(ts_model, **compile_settings)
print('Torch TensorRT: compilation successful.')
return trt_model
|