Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	File size: 13,386 Bytes
			
			8146713  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343  | 
								# *****************************************************************************
#  Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
#  Redistribution and use in source and binary forms, with or without
#  modification, are permitted provided that the following conditions are met:
#      * Redistributions of source code must retain the above copyright
#        notice, this list of conditions and the following disclaimer.
#      * Redistributions in binary form must reproduce the above copyright
#        notice, this list of conditions and the following disclaimer in the
#        documentation and/or other materials provided with the distribution.
#      * Neither the name of the NVIDIA CORPORATION nor the
#        names of its contributors may be used to endorse or promote products
#        derived from this software without specific prior written permission.
#
#  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
#  ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
#  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
#  DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
#  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
#  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
#  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
#  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
#  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************
import torch
from torch.autograd import Variable
import torch.nn.functional as F
@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
    n_channels_int = n_channels[0]
    in_act = input_a + input_b
    t_act = torch.tanh(in_act[:, :n_channels_int, :])
    s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
    acts = t_act * s_act
    return acts
class Invertible1x1Conv(torch.nn.Module):
    """
    The layer outputs both the convolution, and the log determinant
    of its weight matrix.  If reverse=True it does convolution with
    inverse
    """
    def __init__(self, c):
        super(Invertible1x1Conv, self).__init__()
        self.conv = torch.nn.Conv1d(c, c, kernel_size=1, stride=1, padding=0,
                                    bias=False)
        # Sample a random orthonormal matrix to initialize weights
        W = torch.qr(torch.FloatTensor(c, c).normal_())[0]
        # Ensure determinant is 1.0 not -1.0
        if torch.det(W) < 0:
            W[:, 0] = -1 * W[:, 0]
        W = W.view(c, c, 1)
        W = W.contiguous()
        self.conv.weight.data = W
    def forward(self, z):
        # shape
        batch_size, group_size, n_of_groups = z.size()
        W = self.conv.weight.squeeze()
        # Forward computation
        log_det_W = batch_size * n_of_groups * torch.logdet(W.unsqueeze(0).float()).squeeze()
        z = self.conv(z)
        return z, log_det_W
    def infer(self, z):
        # shape
        batch_size, group_size, n_of_groups = z.size()
        W = self.conv.weight.squeeze()
        if not hasattr(self, 'W_inverse'):
            # Reverse computation
            W_inverse = W.float().inverse()
            W_inverse = Variable(W_inverse[..., None])
            if z.type() == 'torch.cuda.HalfTensor' or z.type() == 'torch.HalfTensor':
                W_inverse = W_inverse.half()
            self.W_inverse = W_inverse
        z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0)
        return z
class WN(torch.nn.Module):
    """
    This is the WaveNet like layer for the affine coupling.  The primary
    difference from WaveNet is the convolutions need not be causal.  There is
    also no dilation size reset.  The dilation only doubles on each layer
    """
    def __init__(self, n_in_channels, n_mel_channels, n_layers, n_channels,
                 kernel_size):
        super(WN, self).__init__()
        assert(kernel_size % 2 == 1)
        assert(n_channels % 2 == 0)
        self.n_layers = n_layers
        self.n_channels = n_channels
        self.in_layers = torch.nn.ModuleList()
        self.res_skip_layers = torch.nn.ModuleList()
        self.cond_layers = torch.nn.ModuleList()
        start = torch.nn.Conv1d(n_in_channels, n_channels, 1)
        start = torch.nn.utils.weight_norm(start, name='weight')
        self.start = start
        # Initializing last layer to 0 makes the affine coupling layers
        # do nothing at first.  This helps with training stability
        end = torch.nn.Conv1d(n_channels, 2 * n_in_channels, 1)
        end.weight.data.zero_()
        end.bias.data.zero_()
        self.end = end
        for i in range(n_layers):
            dilation = 2 ** i
            padding = int((kernel_size * dilation - dilation) / 2)
            in_layer = torch.nn.Conv1d(n_channels, 2 * n_channels, kernel_size,
                                       dilation=dilation, padding=padding)
            in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
            self.in_layers.append(in_layer)
            cond_layer = torch.nn.Conv1d(n_mel_channels, 2 * n_channels, 1)
            cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
            self.cond_layers.append(cond_layer)
            # last one is not necessary
            if i < n_layers - 1:
                res_skip_channels = 2 * n_channels
            else:
                res_skip_channels = n_channels
            res_skip_layer = torch.nn.Conv1d(n_channels, res_skip_channels, 1)
            res_skip_layer = torch.nn.utils.weight_norm(
                res_skip_layer, name='weight')
            self.res_skip_layers.append(res_skip_layer)
    def forward(self, forward_input):
        audio, spect = forward_input
        audio = self.start(audio)
        for i in range(self.n_layers):
            acts = fused_add_tanh_sigmoid_multiply(
                self.in_layers[i](audio),
                self.cond_layers[i](spect),
                torch.IntTensor([self.n_channels]))
            res_skip_acts = self.res_skip_layers[i](acts)
            if i < self.n_layers - 1:
                audio = res_skip_acts[:, :self.n_channels, :] + audio
                skip_acts = res_skip_acts[:, self.n_channels:, :]
            else:
                skip_acts = res_skip_acts
            if i == 0:
                output = skip_acts
            else:
                output = skip_acts + output
        return self.end(output)
class WaveGlow(torch.nn.Module):
    def __init__(self, n_mel_channels, n_flows, n_group, n_early_every,
                 n_early_size, WN_config):
        super(WaveGlow, self).__init__()
        self.upsample = torch.nn.ConvTranspose1d(n_mel_channels,
                                                 n_mel_channels,
                                                 1024, stride=256)
        assert(n_group % 2 == 0)
        self.n_flows = n_flows
        self.n_group = n_group
        self.n_early_every = n_early_every
        self.n_early_size = n_early_size
        self.WN = torch.nn.ModuleList()
        self.convinv = torch.nn.ModuleList()
        n_half = int(n_group / 2)
        # Set up layers with the right sizes based on how many dimensions
        # have been output already
        n_remaining_channels = n_group
        for k in range(n_flows):
            if k % self.n_early_every == 0 and k > 0:
                n_half = n_half - int(self.n_early_size / 2)
                n_remaining_channels = n_remaining_channels - self.n_early_size
            self.convinv.append(Invertible1x1Conv(n_remaining_channels))
            self.WN.append(WN(n_half, n_mel_channels * n_group, **WN_config))
        self.n_remaining_channels = n_remaining_channels
    def forward(self, forward_input):
        """
        forward_input[0] = mel_spectrogram:  batch x n_mel_channels x frames
        forward_input[1] = audio: batch x time
        """
        spect, audio = forward_input
        #  Upsample spectrogram to size of audio
        spect = self.upsample(spect)
        assert(spect.size(2) >= audio.size(1))
        if spect.size(2) > audio.size(1):
            spect = spect[:, :, :audio.size(1)]
        spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3)
        spect = spect.contiguous().view(spect.size(0), spect.size(1), -1)
        spect = spect.permute(0, 2, 1)
        audio = audio.unfold(1, self.n_group, self.n_group).permute(0, 2, 1)
        output_audio = []
        log_s_list = []
        log_det_W_list = []
        for k in range(self.n_flows):
            if k % self.n_early_every == 0 and k > 0:
                output_audio.append(audio[:, :self.n_early_size, :])
                audio = audio[:, self.n_early_size:, :]
            audio, log_det_W = self.convinv[k](audio)
            log_det_W_list.append(log_det_W)
            n_half = int(audio.size(1) / 2)
            audio_0 = audio[:, :n_half, :]
            audio_1 = audio[:, n_half:, :]
            output = self.WN[k]((audio_0, spect))
            log_s = output[:, n_half:, :]
            b = output[:, :n_half, :]
            audio_1 = torch.exp(log_s) * audio_1 + b
            log_s_list.append(log_s)
            audio = torch.cat([audio_0, audio_1], 1)
        output_audio.append(audio)
        return torch.cat(output_audio, 1), log_s_list, log_det_W_list
    def infer(self, spect, sigma=1.0):
        spect = self.upsample(spect)
        # trim conv artifacts. maybe pad spec to kernel multiple
        time_cutoff = self.upsample.kernel_size[0] - self.upsample.stride[0]
        spect = spect[:, :, :-time_cutoff]
        spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3)
        spect = spect.contiguous().view(spect.size(0), spect.size(1), -1)
        spect = spect.permute(0, 2, 1)
        audio = torch.randn(spect.size(0),
                            self.n_remaining_channels,
                            spect.size(2), device=spect.device).to(spect.dtype)
        audio = torch.autograd.Variable(sigma * audio)
        for k in reversed(range(self.n_flows)):
            n_half = int(audio.size(1) / 2)
            audio_0 = audio[:, :n_half, :]
            audio_1 = audio[:, n_half:, :]
            output = self.WN[k]((audio_0, spect))
            s = output[:, n_half:, :]
            b = output[:, :n_half, :]
            audio_1 = (audio_1 - b) / torch.exp(s)
            audio = torch.cat([audio_0, audio_1], 1)
            audio = self.convinv[k].infer(audio)
            if k % self.n_early_every == 0 and k > 0:
                z = torch.randn(spect.size(0), self.n_early_size, spect.size(
                    2), device=spect.device).to(spect.dtype)
                audio = torch.cat((sigma * z, audio), 1)
        audio = audio.permute(
            0, 2, 1).contiguous().view(
            audio.size(0), -1).data
        return audio
    def infer_onnx(self, spect, z, sigma=0.9):
        spect = self.upsample(spect)
        # trim conv artifacts. maybe pad spec to kernel multiple
        time_cutoff = self.upsample.kernel_size[0] - self.upsample.stride[0]
        spect = spect[:, :, :-time_cutoff]
        length_spect_group = spect.size(2)//8
        mel_dim = 80
        batch_size = spect.size(0)
        spect = spect.view((batch_size, mel_dim, length_spect_group, self.n_group))
        spect = spect.permute(0, 2, 1, 3)
        spect = spect.contiguous()
        spect = spect.view((batch_size, length_spect_group, self.n_group*mel_dim))
        spect = spect.permute(0, 2, 1)
        spect = spect.contiguous()
        audio = z[:, :self.n_remaining_channels, :]
        z = z[:, self.n_remaining_channels:self.n_group, :]
        audio = sigma*audio
        for k in reversed(range(self.n_flows)):
            n_half = int(audio.size(1) // 2)
            audio_0 = audio[:, :n_half, :]
            audio_1 = audio[:, n_half:(n_half+n_half), :]
            output = self.WN[k]((audio_0, spect))
            s = output[:, n_half:(n_half+n_half), :]
            b = output[:, :n_half, :]
            audio_1 = (audio_1 - b) / torch.exp(s)
            audio = torch.cat([audio_0, audio_1], 1)
            audio = self.convinv[k].infer(audio)
            if k % self.n_early_every == 0 and k > 0:
                audio = torch.cat((z[:, :self.n_early_size, :], audio), 1)
                z = z[:, self.n_early_size:self.n_group, :]
        audio = audio.permute(0,2,1).contiguous().view(batch_size, (length_spect_group * self.n_group))
        return audio
    @staticmethod
    def remove_weightnorm(model):
        waveglow = model
        for WN in waveglow.WN:
            WN.start = torch.nn.utils.remove_weight_norm(WN.start)
            WN.in_layers = remove(WN.in_layers)
            WN.cond_layers = remove(WN.cond_layers)
            WN.res_skip_layers = remove(WN.res_skip_layers)
        return waveglow
def remove(conv_list):
    new_conv_list = torch.nn.ModuleList()
    for old_conv in conv_list:
        old_conv = torch.nn.utils.remove_weight_norm(old_conv)
        new_conv_list.append(old_conv)
    return new_conv_list
 |