Spaces:
Runtime error
Runtime error
File size: 7,968 Bytes
d007479 c5ef960 d007479 c5ef960 d007479 c5ef960 d007479 c5ef960 d007479 c5ef960 d007479 c5ef960 d007479 c5ef960 d007479 4d9c882 c5ef960 d007479 c5ef960 d007479 c5ef960 d007479 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import asyncio
import glob
import os
import time
import gradio as gr
from dotenv import load_dotenv
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings
from grader import Grader
from grader_qa import GraderQA
from ingest import ingest_canvas_discussions
from utils import reset_folder
load_dotenv()
pickle_file = "vector_stores/canvas-discussions.pkl"
index_file = "vector_stores/canvas-discussions.index"
grading_model = 'gpt-4'
qa_model = 'gpt-4'
llm = ChatOpenAI(model_name=qa_model, temperature=0, verbose=True)
embeddings = OpenAIEmbeddings(model='text-embedding-ada-002')
grader = None
grader_qa = None
def add_text(history, text):
print("Question asked: " + text)
response = run_model(text)
history = history + [(text, response)]
print(history)
return history, ""
def run_model(text):
global grader, grader_qa
start_time = time.time()
print("start time:" + str(start_time))
response = grader_qa.chain(text)
sources = []
for document in response['source_documents']:
sources.append(str(document.metadata))
source = ','.join(set(sources))
response = response['answer'] + '\nSources: ' + str(len(sources))
end_time = time.time()
# # If response contains string `SOURCES:`, then add a \n before `SOURCES`
# if "SOURCES:" in response:
# response = response.replace("SOURCES:", "\nSOURCES:")
response = response + "\n\n" + "Time taken: " + str(end_time - start_time)
print(response)
print(sources)
print("Time taken: " + str(end_time - start_time))
return response
def set_model(history):
history = get_first_message(history)
return history
def ingest(url, canvas_api_key, history):
global grader, llm, embeddings
text = f"Downloaded discussion data from {url} to start grading"
ingest_canvas_discussions(url, canvas_api_key)
grader = Grader(grading_model)
response = "Ingested canvas data successfully"
history = history + [(text, response)]
return history
def start_grading(history):
global grader, grader_qa
text = f"Start grading discussions from {url}"
if grader:
# if grader.llm.model_name != grading_model:
# grader = Grader(grading_model)
# Create a new event loop
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
# Use the event loop to run the async function
loop.run_until_complete(grader.run_chain())
grader_qa = GraderQA(grader, embeddings)
response = "Grading done"
finally:
# Close the loop after use
loop.close()
else:
response = "Please ingest data before grading"
history = history + [(text, response)]
return history
def start_downloading():
files = glob.glob("output/*.csv")
if files:
file = files[0]
return gr.outputs.File(file)
else:
return "File not found"
def get_first_message(history):
global grader_qa
history = [(None,
'Get feedback on your canvas discussions. Add your discussion url and get your discussions graded in instantly.')]
return get_grading_status(history)
def get_grading_status(history):
global grader, grader_qa
# Check if grading is complete
if os.path.isdir('output') and len(glob.glob("output/*.csv")) > 0 and len(glob.glob("docs/*.json")) > 0 and len(
glob.glob("docs/*.html")) > 0:
if not grader:
grader = Grader(qa_model)
grader_qa = GraderQA(grader, embeddings)
elif not grader_qa:
grader_qa = GraderQA(grader, embeddings)
if len(history) == 1:
history = history + [(None, 'Grading is already complete. You can now ask questions')]
# enable_fields(False, False, False, False, True, True, True)
# Check if data is ingested
elif len(glob.glob("docs/*.json")) > 0 and len(glob.glob("docs/*.html")):
if not grader_qa:
grader = Grader(qa_model)
if len(history) == 1:
history = history + [(None, 'Canvas data is already ingested. You can grade discussions now')]
# enable_fields(False, False, False, True, True, False, False)
else:
history = history + [(None, 'Please ingest data and start grading')]
# enable_fields(True, True, True, True, True, False, False)
return history
# handle enable/disable of fields
def enable_fields(url_status, canvas_api_key_status, submit_status, grade_status,
download_status, chatbot_txt_status, chatbot_btn_status):
url.update(interactive=url_status)
canvas_api_key.update(interactive=canvas_api_key_status)
submit.update(interactive=submit_status)
grade.update(interactive=grade_status)
download.update(interactive=download_status)
txt.update(interactive=chatbot_txt_status)
ask.update(interactive=chatbot_btn_status)
if not chatbot_txt_status:
txt.update(placeholder="Please grade discussions first")
else:
txt.update(placeholder="Ask a question")
if not url_status:
url.update(placeholder="Data already ingested")
if not canvas_api_key_status:
canvas_api_key.update(placeholder="Data already ingested")
return url, canvas_api_key, submit, grade, download, txt, ask
def reset_data(history):
# Use shutil.rmtree() to delete output, docs, and vector_stores folders, reset grader and grader_qa, and get_grading_status, reset and return history
global grader, grader_qa
reset_folder('output')
reset_folder('docs')
reset_folder('vector_stores')
grader = None
grader_qa = None
history = [(None, 'Data reset successfully')]
return history
def bot(history):
return get_grading_status(history)
with gr.Blocks() as demo:
gr.Markdown(f"<h2><center>{'Canvas Discussion Grading With Feedback'}</center></h2>")
with gr.Row():
url = gr.Textbox(
label="Canvas Discussion URL",
placeholder="Enter your Canvas Discussion URL"
)
canvas_api_key = gr.Textbox(
label="Canvas API Key",
placeholder="Enter your Canvas API Key", type="password"
)
with gr.Row():
submit = gr.Button(value="Submit", variant="secondary", )
grade = gr.Button(value="Grade", variant="secondary")
download = gr.Button(value="Download", variant="secondary")
reset = gr.Button(value="Reset", variant="secondary")
chatbot = gr.Chatbot([], label="Chat with grading results", elem_id="chatbot", height=400)
with gr.Row():
with gr.Column(scale=3):
txt = gr.Textbox(
label="Ask questions about how students did on the discussion",
placeholder="Enter text and press enter, or upload an image", lines=1
)
ask = gr.Button(value="Ask", variant="secondary", scale=1)
chatbot.value = get_first_message([])
submit.click(ingest, inputs=[url, canvas_api_key, chatbot], outputs=[chatbot],
postprocess=False).then(
bot, chatbot, chatbot
)
grade.click(start_grading, inputs=[chatbot], outputs=[chatbot],
postprocess=False).then(
bot, chatbot, chatbot
)
download.click(start_downloading, inputs=[], outputs=[chatbot], postprocess=False).then(
bot, chatbot, chatbot
)
txt.submit(add_text, [chatbot, txt], [chatbot, txt], postprocess=False).then(
bot, chatbot, chatbot
)
ask.click(add_text, inputs=[chatbot, txt], outputs=[chatbot, txt], postprocess=False, ).then(
bot, chatbot, chatbot
)
reset.click(reset_data, inputs=[chatbot], outputs=[chatbot], postprocess=False, show_progress=True, ).success(
bot, chatbot, chatbot)
if __name__ == "__main__":
demo.queue()
demo.queue(concurrency_count=5)
demo.launch(debug=True, )
|