Spaces:
Sleeping
Sleeping
File size: 1,721 Bytes
09c0b7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import streamlit as st
import helper
import argparse
import pickle
import base64
def get_base64(bin_file):
with open(bin_file, 'rb') as f:
data = f.read()
return base64.b64encode(data).decode()
def set_background(png_file):
bin_str = get_base64(png_file)
page_bg_img = '''
<style>
.stApp {
background-image: url("data:image/png;base64,%s");
background-size: cover;
}
</style>
''' % bin_str
st.markdown(page_bg_img, unsafe_allow_html=True)
set_background('quorabackgr.jpg')
# Initialize argparse
parser = argparse.ArgumentParser(description="Streamlit App with Command-Line Arguments")
parser.add_argument('--input_file', type=str, help='Path to the input file')
parser.add_argument('--output_file', type=str, help='Path to the output file')
args = parser.parse_args()
if args.input_file:
input_file = args.input_file
else:
input_file = "default_input.txt"
if args.output_file:
output_file = args.output_file
else:
output_file = "default_output.txt"
# Add an image
st.image("images.png")
with open('model.pkl', 'rb') as f:
unpickler = pickle.Unpickler(f)
while True:
try:
model = unpickler.load()
break
except EOFError:
continue
model = pickle.load(open('model.pkl', 'rb'))
st.header('Predicting if the given Questions are duplicate or not')
q1 = st.text_input('Enter the First Question')
q2 = st.text_input('Enter the Second Question')
if st.button('Predict'):
query = helper.query_point_creator(q1,q2)
result = model.predict(query)[0]
if result:
st.header('The given Questions is Duplicate')
else:
st.header('The given Quesions are Not Duplicate') |