Spaces:
Runtime error
Runtime error
File size: 1,319 Bytes
d93f45c b51ba4d d93f45c b51ba4d d93f45c b51ba4d d93f45c b51ba4d bea1510 d93f45c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
from fastapi import FastAPI
from fastapi.responses import RedirectResponse
from transformers import pipeline
# Create a new FastAPI app instance
app = FastAPI()
@app.get("/")
async def docs_redirect():
return RedirectResponse(url='/docs')
# Initialize the text generation pipeline
# This function will be able to generate text
# given an input.
pipe = pipeline("text2text-generation",
model="google/flan-t5-small")
# Define a function to handle the GET request at `/generate`
# The generate() function is defined as a FastAPI route that takes a
# string parameter called text. The function generates text based on the # input using the pipeline() object, and returns a JSON response
# containing the generated text under the key "output"
# @app.get("/")
# async def root():
# return {"message": "Hello World"}
@app.get("/generate")
def generate(text: str):
"""
Using the text2text-generation pipeline from `transformers`, generate text
from the given input text. The model used is `google/flan-t5-small`, which
can be found [here](<https://huggingface.co/google/flan-t5-small>).
"""
# Use the pipeline to generate text from the given input text
output = pipe(text)
# Return the generated text in a JSON response
return {"output": output[0]["generated_text"]}
|