File size: 3,487 Bytes
bcb6910 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
import os
import requests
import streamlit as st
from youtube_transcript_api import YouTubeTranscriptApi
from langchain.text_splitter import RecursiveCharacterTextSplitter
from dotenv import load_dotenv
# Load environment variables from the .env file in the project directory
load_dotenv()
# Access environment variables
API_URL = os.getenv('HUGGING_FACE_API_URL')
API_KEY = os.getenv('HUGGING_FACE_API_KEY')
def get_transcript(youtube_url):
video_id = youtube_url.split("v=")[-1]
transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
try:
# Try to fetch the manual transcript
transcript = transcript_list.find_manually_created_transcript()
language_code = transcript.language_code # Save the detected language
except:
try:
# If no manual transcript is found, try fetching an auto-generated transcript in a supported language
generated_transcripts = [trans for trans in transcript_list if trans.is_generated]
transcript = generated_transcripts[0]
language_code = transcript.language_code # Save the detected language
except:
# If no auto-generated transcript is found, raise an exception
raise Exception("No suitable transcript found.")
full_transcript = " ".join([part['text'] for part in transcript.fetch()])
return full_transcript, language_code # Return both the transcript and detected language
def summarize_with_hugging_face(transcript, language_code, model_name='meta-llama/Meta-Llama-3-8B'):
# Split the document if it's too long
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=0)
texts = text_splitter.split_text(transcript)
text_to_summarize = " ".join(texts[:4]) # Adjust this as needed
# Prepare the payload for summarization
payload = {
"inputs": {
"prompt": f'''Summarize the following text in {language_code}.
Text: {text_to_summarize}
Add a title to the summary in {language_code}.
Include an INTRODUCTION, BULLET POINTS if possible, and a CONCLUSION in {language_code}.'''
}
}
# Start summarizing using Hugging Face
headers = {"Authorization": f"Bearer {API_KEY}"}
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code == 200:
return response.json()["generated_text"]
else:
raise Exception("Summarization failed.")
def main():
st.title('YouTube Video Summarizer')
link = st.text_input('Enter the link of the YouTube video you want to summarize:')
if st.button('Start'):
if link:
try:
progress = st.progress(0)
status_text = st.empty()
status_text.text('Loading the transcript...')
progress.progress(25)
# Get both the transcript and language_code
transcript, language_code = get_transcript(link)
status_text.text(f'Creating summary...')
progress.progress(75)
summary = summarize_with_hugging_face(transcript, language_code)
status_text.text('Summary:')
st.markdown(summary)
progress.progress(100)
except Exception as e:
st.write(str(e))
else:
st.write('Please enter a valid YouTube link.')
if __name__ == "__main__":
main()
|