Spaces:
Build error
Build error
File size: 9,386 Bytes
5a65991 6723494 5a65991 6723494 9a242d9 6723494 2751f79 199c85f 2751f79 6723494 8f3faa9 6723494 5a65991 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import os
import io
import base64
import numpy as np
import torch
import time
from PIL import Image
from pydantic import BaseModel
from fastapi import FastAPI
from fastapi.responses import Response, JSONResponse
from fastapi.exceptions import HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse
from torchvision.transforms.functional import resize
from .model import (
build_sam_predictor,
build_sam_hq_predictor,
build_mobile_sam_predictor,
get_multi_label_predictor,
)
from .data import Data
from .configs import DATA_ROOT, DEVICE, MODEL
from .transforms import ResizeLongestSide
from .mobile_sam.utils import batched_mask_to_box
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
if MODEL == "sam":
SAM = build_sam_predictor(checkpoint="sam_vit_h_4b8939.pth")
elif MODEL == "sam_hq":
SAM = build_sam_hq_predictor(checkpoint="sam_hq_vit_h.pth")
elif MODEL == "mobile_sam":
SAM = build_mobile_sam_predictor(checkpoint="mobile_sam.pth")
else:
raise ValueError(f"MODEL must be one of sam, sam_hq, got {MODEL}")
DATA = Data(DATA_ROOT / "data.pkl")
T = ResizeLongestSide(1024)
class SamQuery(BaseModel):
points: list[list[int]]
labels: list[int]
class MaskLabel(BaseModel):
mask: str
label: str
class Masks(BaseModel):
masks: list[str]
class MaskLabels(BaseModel):
masks: list[str]
labels: list[str]
class Box(BaseModel):
x: int
y: int
width: int
height: int
class Boxes(BaseModel):
bboxes: list[Box]
class MaskBoxes(BaseModel):
masks: list[str]
bboxes: list[Box]
class MaskBoxLabels(BaseModel):
masks: list[str]
bboxes: list[Box]
labels: list[str]
class ImageData(BaseModel):
image: str
@app.get("/")
async def index():
return FileResponse(path=f"{os.environ['HOME']}/app/instance-labeler/out/index.html", media_type="text/html")
@app.post("/v1/get_label_preds/{image}")
async def get_label_preds(image: str, q: SamQuery) -> MaskBoxes:
if image not in DATA:
raise HTTPException(status_code=404, detail="Image not found")
if MODEL == "sam" or MODEL == "mobile_sam":
SAM.features = torch.from_numpy(DATA.get_emb(image)).to(DEVICE)
elif MODEL == "sam_hq":
features = DATA.get_hq_emb(image)
SAM.features = torch.from_numpy(features[0]).to(DEVICE)
SAM.interm_features = [torch.from_numpy(f).to(DEVICE) for f in features[1:]]
meta_data = DATA.get_meta_data(image)
SAM.original_size = meta_data["original_size"]
SAM.input_size = meta_data["input_size"]
SAM.is_image_set = True # type: ignore
masks, _, _ = SAM.predict( # type: ignore
point_coords=np.array(q.points),
point_labels=np.array(q.labels),
multimask_output=False,
)
bboxes = batched_mask_to_box(torch.as_tensor(masks).to(DEVICE)).cpu().numpy()
bboxes = [
Box(x=x1, y=y1, width=y2 - y1, height=x2 - x1)
for x1, y1, x2, y2 in bboxes.tolist()
]
masks_out = []
for i in range(masks.shape[0]):
mask_i = masks[i, :, :]
mask_i = Image.fromarray(mask_i)
with io.BytesIO() as buf:
mask_i.save(buf, format="PNG")
mask_i = buf.getvalue()
masks_i_b64 = base64.b64encode(mask_i).decode("utf-8")
masks_out.append(masks_i_b64)
return MaskBoxes(masks=masks_out, bboxes=bboxes)
@app.get("/v1/get_labels/{image}")
async def get_labels(image: str) -> MaskBoxLabels:
if image not in DATA:
raise HTTPException(status_code=404, detail="Image not found")
masks, bboxes, labels = DATA.get_labels(image)
if not masks:
raise HTTPException(status_code=404, detail="Label not found")
if len(masks) != len(labels):
raise HTTPException(
status_code=400, detail="Currupted data, masks not equal to labels"
)
out_masks = []
for mask in masks:
with io.BytesIO() as buf:
mask.save(buf, format="PNG")
mask = buf.getvalue()
mask_b64 = base64.b64encode(mask).decode("utf-8")
out_masks.append(mask_b64)
bboxes = [Box(x=x1, y=y1, width=w, height=h) for x1, y1, h, w in bboxes]
return MaskBoxLabels(masks=out_masks, bboxes=bboxes, labels=labels)
@app.post("/v1/get_multi_label_preds/{image}")
async def get_multi_label_preds(image: str, q: MaskLabel) -> MaskBoxLabels:
if image not in DATA:
raise HTTPException(status_code=404, detail="Image not found")
image_pil = DATA.get_image(image)
image_np = np.array(image_pil.convert("RGB"))
mask_data = q.mask.replace("data:image/png;base64,", "")
mask = np.array(Image.open(io.BytesIO(base64.b64decode(mask_data))).convert("L"))
if mask.sum() == 0:
raise HTTPException(status_code=422, detail="Mask is empty")
per_sam_model = get_multi_label_predictor(SAM, image_np, mask)
start = time.perf_counter()
masks, bboxes, _ = per_sam_model(image_np)
print(f"inference time {time.perf_counter() - start}")
if masks is None:
return MaskBoxLabels(masks=[], bboxes=[], labels=[])
masks_out = []
for i in range(len(masks)):
mask_i = Image.fromarray(masks[i])
with io.BytesIO() as buf:
mask_i.save(buf, format="PNG")
mask_i = buf.getvalue()
masks_i_b64 = base64.b64encode(mask_i).decode("utf-8")
masks_out.append(masks_i_b64)
bboxes = [
Box(x=x1, y=y1, width=y2 - y1, height=x2 - x1)
for x1, y1, x2, y2 in bboxes.tolist()
]
return MaskBoxLabels(
masks=masks_out, bboxes=bboxes, labels=[q.label for _ in range(len(masks))]
)
@app.put("/v1/label_image/{image}")
async def label_image(image: str, mask_labels: MaskLabels) -> Response:
if image not in DATA:
raise HTTPException(status_code=404, detail="Image not found")
if len(mask_labels.masks) != len(mask_labels.labels):
raise HTTPException(status_code=400, detail="Invalid input")
save_masks = []
for i in range(len(mask_labels.masks)):
mask_i = mask_labels.masks[i]
mask_i = mask_i.replace("data:image/png;base64,", "")
mask_i = Image.open(io.BytesIO(base64.b64decode(mask_i))).convert("L")
mask_i = mask_i.point(lambda p: 0 if p <= 1 else p)
save_masks.append(mask_i)
bboxes = (
batched_mask_to_box(
torch.as_tensor(np.array([np.array(m) for m in save_masks]))
.to(DEVICE)
.bool()
)
.cpu()
.numpy()
)
bboxes = [(x1, y1, (y2 - y1), (x2 - x1)) for x1, y1, x2, y2 in bboxes.tolist()]
DATA.save_labels(image, save_masks, bboxes, mask_labels.labels)
return Response(content="saved", media_type="text/plain")
@app.get("/v1/get_image/{image}")
async def get_image(image: str) -> Response:
if image not in DATA:
raise HTTPException(status_code=404, detail="Image not found")
image_ = DATA.get_image(image)
if not DATA.emb_exists(image):
SAM.set_image(np.asarray(image_.convert("RGB"))) # type: ignore
if MODEL == "sam" or MODEL == "mobile_sam":
features = SAM.get_image_embedding().detach().cpu().numpy() # type: ignore
DATA.save_emb(image, features)
elif MODEL == "sam_hq":
features = [SAM.features] + SAM.interm_features # type: ignore
DATA.save_hq_emb(image, [f.detach().cpu().numpy() for f in features])
DATA.save_meta_data(
image,
{"original_size": SAM.original_size, "input_size": SAM.input_size},
)
with io.BytesIO() as buf:
image_.save(buf, format="PNG")
image_ = buf.getvalue()
image_b64 = base64.b64encode(image_).decode("utf-8")
return Response(content=image_b64, media_type="image/png")
@app.put("/v1/upload_image/{image}")
async def upload_image(image: str, image_data: ImageData) -> Response:
image_b64 = image_data.image
image_b64 = image_b64.replace("data:image/png;base64,", "")
image_b64 = image_b64.replace("data:image/jpeg;base64,", "")
if "data:image/" in image_b64:
raise HTTPException(
status_code=400, detail="Invalid image format, only accepts png and jpeg"
)
image_pil = Image.open(io.BytesIO(base64.b64decode(image_b64))).convert("RGB")
# image_bytes = io.BytesIO(base64.b64decode(image_b64))
# image_pil = Image.open(image_bytes)
target_size = T.get_preprocess_shape(
image_pil.size[1], image_pil.size[0], T.target_length
)
image_pil = resize(image_pil, target_size)
image_id = DATA.save_image(image, image_pil)
return Response(content=image_id, media_type="text/plain")
@app.delete("/autolabeler/v1/delete_image/{image}")
async def delete_image(image: str) -> Response:
if image not in DATA:
raise HTTPException(status_code=404, detail="Image not found")
DATA.delete_image(image)
return Response(content="deleted", media_type="text/plain")
@app.get("/v1/get_all_images")
async def get_all_images() -> Response:
return JSONResponse(content={"images": DATA.get_all_images()})
app.mount("/", StaticFiles(directory=f"{os.environ['HOME']}/app/instance-labeler/out", html=True), name="static")
|