File size: 6,656 Bytes
1ee3bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
3c77757
1ee3bf0
 
 
3c77757
 
1ee3bf0
 
 
 
 
 
 
 
 
3c77757
 
 
 
 
 
 
1ee3bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c77757
 
 
 
1ee3bf0
 
 
 
 
 
 
 
 
 
 
 
 
3c77757
1ee3bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import gradio as gr

from io import BytesIO
import requests
import PIL
from PIL import Image
import numpy as np
import os
import uuid
import torch
from torch import autocast
import cv2
from matplotlib import pyplot as plt
from torchvision import transforms
from diffusers import DiffusionPipeline, UNet2DModel

from share_btn import community_icon_html, loading_icon_html, share_js

unet = UNet2DModel.from_pretrained("valhalla/sdxl-inpaint-ema")
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")

def read_content(file_path: str) -> str:
    """read the content of target file
    """
    with open(file_path, 'r', encoding='utf-8') as f:
        content = f.read()

    return content

def predict(dict, prompt="", guidance_scale, steps, strength):
    
    init_image = dict["image"].convert("RGB").resize((1024, 1024))
    mask = dict["mask"].convert("RGB").resize((1024, 1024))
    
    output = pipe(prompt = prompt, image=init_image, mask_image=mask, guidance_scale=guidance_scale, steps=int(steps), strength=strength)
    
    return output.images[0], gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)


css = '''
.container {max-width: 1150px;margin: auto;padding-top: 1.5rem}
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
    from {
        transform: rotate(0deg);
    }
    to {
        transform: rotate(360deg);
    }
}
#share-btn-container {
    display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
    all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
}
#share-btn * {
    all: unset;
}
#share-btn-container div:nth-child(-n+2){
    width: auto !important;
    min-height: 0px !important;
}
#share-btn-container .wrap {
    display: none !important;
}
'''

image_blocks = gr.Blocks(css=css)
with image_blocks as demo:
    gr.HTML(read_content("header.html"))
    with gr.Group():
        with gr.Box():
            with gr.Row():
                with gr.Column():
                    image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="pil", label="Upload").style(height=400)
                    with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
                        prompt = gr.Textbox(placeholder = 'Your prompt (what you want in place of what is erased)', show_label=False, elem_id="input-text")
                        guidance_scale = gradio.Number(value=7.5, minimum=1.0, maximum=20.0)
                        steps = gradio.Number(value=20, minimum=10, maximum=50)
                        strength = gradio.Number(value=0.0, minimum=0.0, maximum=0.0)
                        
                        btn = gr.Button("Inpaint!").style(
                            margin=False,
                            rounded=(False, True, True, False),
                            full_width=False,
                        )
                with gr.Column():
                    image_out = gr.Image(label="Output", elem_id="output-img").style(height=400)
                    with gr.Group(elem_id="share-btn-container"):
                        community_icon = gr.HTML(community_icon_html, visible=False)
                        loading_icon = gr.HTML(loading_icon_html, visible=False)
                        share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
            

            btn.click(fn=predict, inputs=[image, prompt, guidance_scale, steps, strength], outputs=[image_out, community_icon, loading_icon, share_button])
            share_button.click(None, [], [], _js=share_js)



            gr.HTML(
                """
                    <div class="footer">
                        <p>Model by <a href="https://huggingface.co/runwayml" style="text-decoration: underline;" target="_blank">RunwayML</a> - Gradio Demo by 🤗 Hugging Face
                        </p>
                    </div>
                    <div class="acknowledgments">
                        <p><h4>LICENSE</h4>
        The model is licensed with a <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" style="text-decoration: underline;" target="_blank">CreativeML Open RAIL-M</a> license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" target="_blank" style="text-decoration: underline;" target="_blank">read the license</a></p>
                        <p><h4>Biases and content acknowledgment</h4>
        Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the <a href="https://laion.ai/blog/laion-5b/" style="text-decoration: underline;" target="_blank">LAION-5B dataset</a>, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. You can read more in the <a href="https://huggingface.co/CompVis/stable-diffusion-v1-4" style="text-decoration: underline;" target="_blank">model card</a></p>
                    </div>
                """
            )

image_blocks.launch()