File size: 4,811 Bytes
ec3f4e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gradio as gr
from utils.pipeline_utils import determine_pipe_loading_memory
from utils.llm_utils import LLMCodeOptimizer
from prompts import system_prompt, generate_prompt
from utils.hardware_utils import categorize_ram, categorize_vram

LLM_CACHE = {}


def get_output_code(
    repo_id,
    gemini_model_to_use,
    disable_bf16,
    enable_lossy,
    system_ram,
    gpu_vram,
    torch_compile_friendly,
    fp8_friendly,
):
    loading_mem_out = determine_pipe_loading_memory(repo_id, None, disable_bf16)
    load_memory = loading_mem_out["total_loading_memory_gb"]
    ram_category = categorize_ram(system_ram)
    vram_category = categorize_vram(gpu_vram)

    print(f"RAM Category: {ram_category}")
    print(f"VRAM Category: {vram_category}")

    if gemini_model_to_use not in LLM_CACHE:
        print(f"Initializing new LLM instance for: {gemini_model_to_use}")
        # If not, create it and add it to the cache
        LLM_CACHE[gemini_model_to_use] = LLMCodeOptimizer(model_name=gemini_model_to_use, system_prompt=system_prompt)

    llm = LLM_CACHE[gemini_model_to_use]
    current_generate_prompt = generate_prompt.format(
        ckpt_id=repo_id,
        pipeline_loading_memory=load_memory,
        available_system_ram=system_ram,
        available_gpu_vram=gpu_vram,
        enable_lossy_outputs=enable_lossy,
        is_fp8_supported=fp8_friendly,
        enable_torch_compile=torch_compile_friendly,
    )
    generated_prompt = current_generate_prompt
    llm_output = llm(current_generate_prompt)
    return llm_output, generated_prompt


# --- Gradio UI Definition ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # 🧨 Generate Diffusers Inference code snippet tailored to your machine
        Enter a Hugging Face Hub `repo_id` and your system specs to get started for inference.
        This tool uses [Gemini](https://ai.google.dev/gemini-api/docs/models) to generate the code based on your settings. This is based on
        [sayakpaul/auto-diffusers-docs](https://github.com/sayakpaul/auto-diffusers-docs/).
        """
    )

    with gr.Row():
        with gr.Column(scale=3):
            repo_id = gr.Textbox(
                label="Hugging Face Repo ID",
                placeholder="e.g., black-forest-labs/FLUX.1-dev",
                info="The model repository you want to analyze.",
                value="black-forest-labs/FLUX.1-dev",
            )
            gemini_model_to_use = gr.Dropdown(
                ["gemini-2.5-flash", "gemini-2.5-pro"],
                value="gemini-2.5-flash",
                label="Gemini Model",
                info="Select the model to generate the analysis.",
            )
            with gr.Row():
                system_ram = gr.Number(label="System RAM (GB)", value=20)
                gpu_vram = gr.Number(label="GPU VRAM (GB)", value=8)

            with gr.Row():
                disable_bf16 = gr.Checkbox(
                    label="Disable BF16 (Use FP32)",
                    value=False,
                    info="Calculate using 32-bit precision instead of 16-bit.",
                )
                enable_lossy = gr.Checkbox(
                    label="Allow Lossy Quantization", value=False, info="Consider 8-bit/4-bit quantization."
                )
                torch_compile_friendly = gr.Checkbox(
                    label="torch.compile() friendly", value=False, info="Model is compatible with torch.compile."
                )
                fp8_friendly = gr.Checkbox(
                    label="fp8 friendly", value=False, info="Model and hardware support FP8 precision."
                )

        with gr.Column(scale=1):
            submit_btn = gr.Button("Estimate Memory ☁", variant="primary", scale=1)

    with gr.Accordion("Generated LLM Prompt (for debugging)", open=False):
        prompt_output = gr.Textbox(label="Prompt", show_copy_button=True, lines=10, interactive=False)

    gr.Markdown("---")
    gr.Markdown("### Estimation Result")

    output_markdown = gr.Markdown(label="LLM Output", value="*Your results will appear here...*")

    gr.Markdown(
        """
        ---
        > ⛔️ **Disclaimer:** Large Language Models (LLMs) can make mistakes. The information provided
        > is an estimate and should be verified. Always test the model on your target hardware to confirm
        > actual memory requirements.
        """
    )

    # --- Event Handling ---
    all_inputs = [
        repo_id,
        gemini_model_to_use,
        disable_bf16,
        enable_lossy,
        system_ram,
        gpu_vram,
        torch_compile_friendly,
        fp8_friendly,
    ]
    submit_btn.click(fn=get_output_code, inputs=all_inputs, outputs=[output_markdown, prompt_output])


if __name__ == "__main__":
    demo.launch()