Spaces:
Sleeping
Sleeping
File size: 4,826 Bytes
dfbe641 1d1bc23 8df9ec0 dfbe641 85c676c 822b7d2 66bbbb0 2133add f371fff 694ef2b 5afb708 96ecbed d21a4cc 8df9ec0 d21a4cc 8df9ec0 85c676c 8df9ec0 85c676c 3d891e3 85c676c 3d891e3 85c676c 8df9ec0 694ef2b 0134dcf 8df9ec0 85c676c 8df9ec0 85c676c d21a4cc a0b5df2 6f4097c 85c676c 6f4097c 85c676c 1d1bc23 e361379 1d1bc23 85c676c df404d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
import numpy as np
import requests
import streamlit as st
import openai
import json
def main():
st.title("Scientific Question Generation")
st.write("This application is designed to generate a question given a piece of scientific text.\
We include the output from four different models, the [BART-Large](https://huggingface.co/dhmeltzer/bart-large_askscience-qg) and [FLAN-T5-Base](https://huggingface.co/dhmeltzer/flan-t5-base_askscience-qg) models \
fine-tuned on the r/AskScience split of the [ELI5 dataset](https://huggingface.co/datasets/eli5) as well as the zero-shot output \
of the [FLAN-T5-XXL](https://huggingface.co/google/flan-t5-xxl) model and the [GPT-3.5-turbo](https://platform.openai.com/docs/models/gpt-3-5) model.\
\n\n For a more thorough discussion of question generation see this [report](https://wandb.ai/dmeltzer/Question_Generation/reports/Exploratory-Data-Analysis-for-r-AskScience--Vmlldzo0MjQwODg1?accessToken=fndbu2ar26mlbzqdphvb819847qqth2bxyi4hqhugbnv97607mj01qc7ed35v6w8) for EDA on the r/AskScience dataset and this \
[report](https://api.wandb.ai/links/dmeltzer/7an677es) for details on our training procedure.\
\n\nThe two fine-tuned models (BART-Large and FLAN-T5-Base) are hosted on AWS using a combination of AWS Sagemaker, Lambda, and API gateway.\
GPT-3.5 is called using the OpenAI API and the FLAN-T5-XXL model is hosted by HuggingFace and is called with their Inference API.\
\n \n **Disclaimer**: When first running this application it may take around 30-60 seconds for the first two responses to load because of the cold start problem with AWS Lambda.\
You may recieve also an error message when calling the FLAN-T5-XXL model since the Inference API takes around 20 seconds to load the model.\
Both issues should disappear on any subsequent calls to the application and we apologize for the delay.")
AWS_checkpoints = {}
AWS_checkpoints['BART-Large']='https://8hlnvys7bh.execute-api.us-east-1.amazonaws.com/beta/'
AWS_checkpoints['FLAN-T5-Base']='https://gnrxh05827.execute-api.us-east-1.amazonaws.com/beta/'
# Right now HF_checkpoints just consists of FLAN-T5-XXL but we may add more models later.
HF_checkpoints = ['google/flan-t5-xxl']
# Token to access HF inference API
HF_headers = {"Authorization": f"Bearer {st.secrets['HF_token']}"}
# Token to access OpenAI API
openai.api_key = st.secrets['OpenAI_token']
# Used to query models hosted on Huggingface
def query(checkpoint, payload):
API_URL = f"https://api-inference.huggingface.co/models/{checkpoint}"
response = requests.post(API_URL,
headers=headers,
json=payload)
return response.json()
# User search
user_input = st.text_area("Question Generator",
"""Black holes are the most gravitationally dense objects in the universe.""")
if user_input:
for name, url in AWS_checkpoints.items():
headers={'x-api-key': st.secrets['aws-key']}
input_data = json.dumps({'inputs':user_input})
r = requests.get(url,data=input_data,headers=headers)
output = r.json()[0]['generated_text']
st.write(f'**{name}**: {output}')
model_engine = "gpt-3.5-turbo"
# Max tokens to produce
max_tokens = 50
# Prompt GPT-3.5 with an explicit question
prompt = f"generate a question: {user_input}"
# We give GPT-3.5 a message so it knows to generate questions from text.
response=openai.ChatCompletion.create(
model=model_engine,
messages=[
{"role": "system", "content": "You are a helpful assistant that generates questions from text."},
{"role": "user", "content": prompt},
])
output = response['choices'][0]['message']['content']
st.write(f'**{model_engine}**: {output}')
for checkpoint in HF_checkpoints:
model_name = checkpoint.split('/')[1]
# For FLAN models we need to give them instructions explicitly.
if 'flan' in model_name.lower():
prompt = 'generate a question: ' + user_input
else:
prompt = user_input
output = query(checkpoint,{
"inputs": prompt,
"wait_for_model":True})
try:
output=output[0]['generated_text']
except:
st.write(output)
return
st.write(f'**{model_name}**: {output}')
if __name__ == "__main__":
main()
#[0]['generated_text'] |