Spaces:
Sleeping
Sleeping
File size: 7,151 Bytes
acfe1ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import numpy as np
import pandas as pd
import cv2
import redis
# insight face
from insightface.app import FaceAnalysis
from sklearn.metrics import pairwise
# time
import time
from datetime import datetime
import os
# Connect to Redis Client
hostname = 'redis-11109.c321.us-east-1-2.ec2.cloud.redislabs.com'
portnumber = 11109
password = 'HI3acnzpSHJcssm7qtuuv7GmeakjIEKl'
r = redis.StrictRedis(host=hostname,
port=portnumber,
password=password)
# Retrive Data from database
def retrive_data(name):
retrive_dict= r.hgetall(name)
retrive_series = pd.Series(retrive_dict)
retrive_series = retrive_series.apply(lambda x: np.frombuffer(x,dtype=np.float32))
index = retrive_series.index
index = list(map(lambda x: x.decode(), index))
retrive_series.index = index
retrive_df = retrive_series.to_frame().reset_index()
retrive_df.columns = ['name_role','facial_features']
retrive_df[['Name','Role']] = retrive_df['name_role'].apply(lambda x: x.split('@')).apply(pd.Series)
return retrive_df[['Name','Role','facial_features']]
# configure face analysis
faceapp = FaceAnalysis(name='buffalo_sc',root='insightface_model', providers = ['CPUExecutionProvider'])
faceapp.prepare(ctx_id = 0, det_size=(640,640), det_thresh = 0.5)
# ML Search Algorithm
def ml_search_algorithm(dataframe,feature_column,test_vector,
name_role=['Name','Role'],thresh=0.5):
"""
cosine similarity base search algorithm
"""
# step-1: take the dataframe (collection of data)
dataframe = dataframe.copy()
# step-2: Index face embeding from the dataframe and convert into array
X_list = dataframe[feature_column].tolist()
x = np.asarray(X_list)
# step-3: Cal. cosine similarity
similar = pairwise.cosine_similarity(x,test_vector.reshape(1,-1))
similar_arr = np.array(similar).flatten()
dataframe['cosine'] = similar_arr
# step-4: filter the data
data_filter = dataframe.query(f'cosine >= {thresh}')
if len(data_filter) > 0:
# step-5: get the person name
data_filter.reset_index(drop=True,inplace=True)
argmax = data_filter['cosine'].argmax()
person_name, person_role = data_filter.loc[argmax][name_role]
else:
person_name = 'Unknown'
person_role = 'Unknown'
return person_name, person_role
### Real Time Prediction
# we need to save logs for every 1 mins
class RealTimePred:
def __init__(self):
self.logs = dict(name=[],role=[],current_time=[])
def reset_dict(self):
self.logs = dict(name=[],role=[],current_time=[])
def saveLogs_redis(self):
# step-1: create a logs dataframe
dataframe = pd.DataFrame(self.logs)
# step-2: drop the duplicate information (distinct name)
dataframe.drop_duplicates('name',inplace=True)
# step-3: push data to redis database (list)
# encode the data
name_list = dataframe['name'].tolist()
role_list = dataframe['role'].tolist()
ctime_list = dataframe['current_time'].tolist()
encoded_data = []
for name, role, ctime in zip(name_list, role_list, ctime_list):
if name != 'Unknown':
concat_string = f"{name}@{role}@{ctime}"
encoded_data.append(concat_string)
if len(encoded_data) >0:
r.lpush('attendance:logs',*encoded_data)
self.reset_dict()
def face_prediction(self,test_image, dataframe,feature_column,
name_role=['Name','Role'],thresh=0.5):
# step-1: find the time
current_time = str(datetime.now())
# step-1: take the test image and apply to insight face
results = faceapp.get(test_image)
test_copy = test_image.copy()
# step-2: use for loop and extract each embedding and pass to ml_search_algorithm
for res in results:
x1, y1, x2, y2 = res['bbox'].astype(int)
embeddings = res['embedding']
person_name, person_role = ml_search_algorithm(dataframe,
feature_column,
test_vector=embeddings,
name_role=name_role,
thresh=thresh)
if person_name == 'Unknown':
color =(0,0,255) # bgr
else:
color = (0,255,0)
cv2.rectangle(test_copy,(x1,y1),(x2,y2),color)
text_gen = person_name
cv2.putText(test_copy,text_gen,(x1,y1),cv2.FONT_HERSHEY_DUPLEX,0.7,color,2)
cv2.putText(test_copy,current_time,(x1,y2+10),cv2.FONT_HERSHEY_DUPLEX,0.7,color,2)
# save info in logs dict
self.logs['name'].append(person_name)
self.logs['role'].append(person_role)
self.logs['current_time'].append(current_time)
return test_copy
#### Registration Form
class RegistrationForm:
def __init__(self):
self.sample = 0
def reset(self):
self.sample = 0
def get_embedding(self,frame):
# get results from insightface model
results = faceapp.get(frame,max_num=1)
embeddings = None
for res in results:
self.sample += 1
x1, y1, x2, y2 = res['bbox'].astype(int)
cv2.rectangle(frame, (x1,y1),(x2,y2),(0,255,0),1)
# put text samples info
text = f"samples = {self.sample}"
cv2.putText(frame,text,(x1,y1),cv2.FONT_HERSHEY_DUPLEX,0.6,(255,255,0),2)
# facial features
embeddings = res['embedding']
return frame, embeddings
def save_data_in_redis_db(self,name,role):
# validation name
if name is not None:
if name.strip() != '':
key = f'{name}@{role}'
else:
return 'name_false'
else:
return 'name_false'
# if face_embedding.txt exists
if 'face_embedding.txt' not in os.listdir():
return 'file_false'
# step-1: load "face_embedding.txt"
x_array = np.loadtxt('face_embedding.txt',dtype=np.float32) # flatten array
# step-2: convert into array (proper shape)
received_samples = int(x_array.size/512)
x_array = x_array.reshape(received_samples,512)
x_array = np.asarray(x_array)
# step-3: cal. mean embeddings
x_mean = x_array.mean(axis=0)
x_mean = x_mean.astype(np.float32)
x_mean_bytes = x_mean.tobytes()
# step-4: save this into redis database
# redis hashes
r.hset(name='academy:register',key=key,value=x_mean_bytes)
#
os.remove('face_embedding.txt')
self.reset()
return True |