File size: 8,474 Bytes
49a842a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os
from contextlib import contextmanager
import torch
import numpy as np
from einops import rearrange
import torch.nn.functional as F
import pytorch_lightning as pl
from lvdm.modules.networks.ae_modules import Encoder, Decoder
from lvdm.distributions import DiagonalGaussianDistribution
from utils.utils import instantiate_from_config


class AutoencoderKL(pl.LightningModule):
    def __init__(self,
                 ddconfig,
                 lossconfig,
                 embed_dim,
                 ckpt_path=None,
                 ignore_keys=[],
                 image_key="image",
                 colorize_nlabels=None,
                 monitor=None,
                 test=False,
                 logdir=None,
                 input_dim=4,
                 test_args=None,
                 ):
        super().__init__()
        self.image_key = image_key
        self.encoder = Encoder(**ddconfig)
        self.decoder = Decoder(**ddconfig)
        self.loss = instantiate_from_config(lossconfig)
        assert ddconfig["double_z"]
        self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
        self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
        self.embed_dim = embed_dim
        self.input_dim = input_dim
        self.test = test
        self.test_args = test_args
        self.logdir = logdir
        if colorize_nlabels is not None:
            assert type(colorize_nlabels)==int
            self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
        if monitor is not None:
            self.monitor = monitor
        if ckpt_path is not None:
            self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
        if self.test:
            self.init_test()
    
    def init_test(self,):
        self.test = True
        save_dir = os.path.join(self.logdir, "test")
        if 'ckpt' in self.test_args:
            ckpt_name = os.path.basename(self.test_args.ckpt).split('.ckpt')[0] + f'_epoch{self._cur_epoch}'
            self.root = os.path.join(save_dir, ckpt_name)
        else:
            self.root = save_dir
        if 'test_subdir' in self.test_args:
            self.root = os.path.join(save_dir, self.test_args.test_subdir)

        self.root_zs = os.path.join(self.root, "zs")
        self.root_dec = os.path.join(self.root, "reconstructions")
        self.root_inputs = os.path.join(self.root, "inputs")
        os.makedirs(self.root, exist_ok=True)

        if self.test_args.save_z:
            os.makedirs(self.root_zs, exist_ok=True)
        if self.test_args.save_reconstruction:
            os.makedirs(self.root_dec, exist_ok=True)
        if self.test_args.save_input:
            os.makedirs(self.root_inputs, exist_ok=True)
        assert(self.test_args is not None)
        self.test_maximum = getattr(self.test_args, 'test_maximum', None) 
        self.count = 0
        self.eval_metrics = {}
        self.decodes = []
        self.save_decode_samples = 2048

    def init_from_ckpt(self, path, ignore_keys=list()):
        sd = torch.load(path, map_location="cpu")
        try:
            self._cur_epoch = sd['epoch']
            sd = sd["state_dict"]
        except:
            self._cur_epoch = 'null'
        keys = list(sd.keys())
        for k in keys:
            for ik in ignore_keys:
                if k.startswith(ik):
                    print("Deleting key {} from state_dict.".format(k))
                    del sd[k]
        self.load_state_dict(sd, strict=False)
        # self.load_state_dict(sd, strict=True)
        print(f"Restored from {path}")

    def encode(self, x, **kwargs):
        
        h = self.encoder(x)
        moments = self.quant_conv(h)
        posterior = DiagonalGaussianDistribution(moments)
        return posterior

    def decode(self, z, **kwargs):
        z = self.post_quant_conv(z)
        dec = self.decoder(z)
        return dec

    def forward(self, input, sample_posterior=True):
        posterior = self.encode(input)
        if sample_posterior:
            z = posterior.sample()
        else:
            z = posterior.mode()
        dec = self.decode(z)
        return dec, posterior

    def get_input(self, batch, k):
        x = batch[k]
        if x.dim() == 5 and self.input_dim == 4:
            b,c,t,h,w = x.shape
            self.b = b
            self.t = t 
            x = rearrange(x, 'b c t h w -> (b t) c h w')

        return x

    def training_step(self, batch, batch_idx, optimizer_idx):
        inputs = self.get_input(batch, self.image_key)
        reconstructions, posterior = self(inputs)

        if optimizer_idx == 0:
            # train encoder+decoder+logvar
            aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
                                            last_layer=self.get_last_layer(), split="train")
            self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
            self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
            return aeloss

        if optimizer_idx == 1:
            # train the discriminator
            discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
                                                last_layer=self.get_last_layer(), split="train")

            self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
            self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
            return discloss

    def validation_step(self, batch, batch_idx):
        inputs = self.get_input(batch, self.image_key)
        reconstructions, posterior = self(inputs)
        aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
                                        last_layer=self.get_last_layer(), split="val")

        discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
                                            last_layer=self.get_last_layer(), split="val")

        self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
        self.log_dict(log_dict_ae)
        self.log_dict(log_dict_disc)
        return self.log_dict
    
    def configure_optimizers(self):
        lr = self.learning_rate
        opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
                                  list(self.decoder.parameters())+
                                  list(self.quant_conv.parameters())+
                                  list(self.post_quant_conv.parameters()),
                                  lr=lr, betas=(0.5, 0.9))
        opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
                                    lr=lr, betas=(0.5, 0.9))
        return [opt_ae, opt_disc], []

    def get_last_layer(self):
        return self.decoder.conv_out.weight

    @torch.no_grad()
    def log_images(self, batch, only_inputs=False, **kwargs):
        log = dict()
        x = self.get_input(batch, self.image_key)
        x = x.to(self.device)
        if not only_inputs:
            xrec, posterior = self(x)
            if x.shape[1] > 3:
                # colorize with random projection
                assert xrec.shape[1] > 3
                x = self.to_rgb(x)
                xrec = self.to_rgb(xrec)
            log["samples"] = self.decode(torch.randn_like(posterior.sample()))
            log["reconstructions"] = xrec
        log["inputs"] = x
        return log

    def to_rgb(self, x):
        assert self.image_key == "segmentation"
        if not hasattr(self, "colorize"):
            self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
        x = F.conv2d(x, weight=self.colorize)
        x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
        return x

class IdentityFirstStage(torch.nn.Module):
    def __init__(self, *args, vq_interface=False, **kwargs):
        self.vq_interface = vq_interface  # TODO: Should be true by default but check to not break older stuff
        super().__init__()

    def encode(self, x, *args, **kwargs):
        return x

    def decode(self, x, *args, **kwargs):
        return x

    def quantize(self, x, *args, **kwargs):
        if self.vq_interface:
            return x, None, [None, None, None]
        return x

    def forward(self, x, *args, **kwargs):
        return x