File size: 19,741 Bytes
e17e8cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
"""This code is taken from <https://github.com/alexandre01/deepsvg>
by Alexandre Carlier, Martin Danelljan, Alexandre Alahi and Radu Timofte
from the paper >https://arxiv.org/pdf/2007.11301.pdf>
"""

from __future__ import annotations
from .geom import *
from src.preprocessing.deepsvg.deepsvg_difflib.tensor import SVGTensor
from .util_fns import get_roots
from enum import Enum
import torch
import math
from typing import List, Union
Num = Union[int, float]


class SVGCmdEnum(Enum):
    MOVE_TO = "m"
    LINE_TO = "l"
    CUBIC_BEZIER = "c"
    CLOSE_PATH = "z"
    ELLIPTIC_ARC = "a"
    QUAD_BEZIER = "q"
    LINE_TO_HORIZONTAL = "h"
    LINE_TO_VERTICAL = "v"
    CUBIC_BEZIER_REFL = "s"
    QUAD_BEZIER_REFL = "t"


svgCmdArgTypes = {
    SVGCmdEnum.MOVE_TO.value: [Point],
    SVGCmdEnum.LINE_TO.value: [Point],
    SVGCmdEnum.CUBIC_BEZIER.value: [Point, Point, Point],
    SVGCmdEnum.CLOSE_PATH.value: [],
    SVGCmdEnum.ELLIPTIC_ARC.value: [Radius, Angle, Flag, Flag, Point],
    SVGCmdEnum.QUAD_BEZIER.value: [Point, Point],
    SVGCmdEnum.LINE_TO_HORIZONTAL.value: [XCoord],
    SVGCmdEnum.LINE_TO_VERTICAL.value: [YCoord],
    SVGCmdEnum.CUBIC_BEZIER_REFL.value: [Point, Point],
    SVGCmdEnum.QUAD_BEZIER_REFL.value: [Point],
}


class SVGCommand:
    def __init__(self, command: SVGCmdEnum, args: List[Geom], start_pos: Point, end_pos: Point):
        self.command = command
        self.args = args

        self.start_pos = start_pos
        self.end_pos = end_pos

    def copy(self):
        raise NotImplementedError

    @staticmethod
    def from_str(cmd_str: str, args_str: List[Num], pos=None, initial_pos=None, prev_command: SVGCommand = None):
        if pos is None:
            pos = Point(0.)
        if initial_pos is None:
            initial_pos = Point(0.)

        cmd = SVGCmdEnum(cmd_str.lower())

        # Implicit MoveTo commands are treated as LineTo
        if cmd is SVGCmdEnum.MOVE_TO and len(args_str) > 2:
            l_cmd_str = SVGCmdEnum.LINE_TO.value
            if cmd_str.isupper():
                l_cmd_str = l_cmd_str.upper()

            l1, pos, initial_pos = SVGCommand.from_str(cmd_str, args_str[:2], pos, initial_pos)
            l2, pos, initial_pos = SVGCommand.from_str(l_cmd_str, args_str[2:], pos, initial_pos)
            return [*l1, *l2], pos, initial_pos

        nb_args = len(args_str)

        if cmd is SVGCmdEnum.CLOSE_PATH:
            assert nb_args == 0, f"Expected no argument for command {cmd_str}: {nb_args} given"
            return [SVGCommandClose(pos, initial_pos)], initial_pos, initial_pos

        expected_nb_args = sum([ArgType.num_args for ArgType in svgCmdArgTypes[cmd.value]])
        assert nb_args % expected_nb_args == 0, f"Expected {expected_nb_args} arguments for command {cmd_str}: {nb_args} given"

        l = []
        i = 0
        for _ in range(nb_args // expected_nb_args):
            args = []
            for ArgType in svgCmdArgTypes[cmd.value]:
                num_args = ArgType.num_args
                arg = ArgType(*args_str[i:i+num_args])

                if cmd_str.islower():
                    arg.translate(pos)
                if isinstance(arg, Coord):
                    arg = arg.to_point(pos)

                args.append(arg)
                i += num_args

            if cmd is SVGCmdEnum.LINE_TO or cmd is SVGCmdEnum.LINE_TO_VERTICAL or cmd is SVGCmdEnum.LINE_TO_HORIZONTAL:
                cmd_parsed = SVGCommandLine(pos, *args)
            elif cmd is SVGCmdEnum.MOVE_TO:
                cmd_parsed = SVGCommandMove(pos, *args)
            elif cmd is SVGCmdEnum.ELLIPTIC_ARC:
                cmd_parsed = SVGCommandArc(pos, *args)
            elif cmd is SVGCmdEnum.CUBIC_BEZIER:
                cmd_parsed = SVGCommandBezier(pos, *args)
            elif cmd is SVGCmdEnum.QUAD_BEZIER:
                cmd_parsed = SVGCommandBezier(pos, args[0], args[0], args[1])
            elif cmd is SVGCmdEnum.QUAD_BEZIER_REFL or cmd is SVGCmdEnum.CUBIC_BEZIER_REFL:
                if isinstance(prev_command, SVGCommandBezier):
                    control1 = pos * 2 - prev_command.control2
                else:
                    control1 = pos
                control2 = args[0] if cmd is SVGCmdEnum.CUBIC_BEZIER_REFL else control1
                cmd_parsed = SVGCommandBezier(pos, control1, control2, args[-1])

            prev_command = cmd_parsed
            pos = cmd_parsed.end_pos

            if cmd is SVGCmdEnum.MOVE_TO:
                initial_pos = pos

            l.append(cmd_parsed)

        return l, pos, initial_pos

    def __repr__(self):
        cmd = self.command.value.upper()
        return f"{cmd}{self.get_geoms()}"

    def to_str(self):
        cmd = self.command.value.upper()
        return f"{cmd}{' '.join([arg.to_str() for arg in self.args])}"

    def to_tensor(self, PAD_VAL=-1):
        raise NotImplementedError

    @staticmethod
    def from_tensor(vector: torch.Tensor):
        cmd_index, args = int(vector[0]), vector[1:]

        cmd = SVGCmdEnum(SVGTensor.COMMANDS_SIMPLIFIED[cmd_index])
        radius = Radius(*args[:2].tolist())
        x_axis_rotation = Angle(*args[2:3].tolist())
        large_arc_flag = Flag(args[3].item())
        sweep_flag = Flag(args[4].item())
        start_pos = Point(*args[5:7].tolist())
        control1 = Point(*args[7:9].tolist())
        control2 = Point(*args[9:11].tolist())
        end_pos = Point(*args[11:].tolist())

        return SVGCommand.from_args(cmd, radius, x_axis_rotation, large_arc_flag, sweep_flag, start_pos, control1, control2, end_pos)

    @staticmethod
    def from_args(command: SVGCmdEnum, radius: Radius, x_axis_rotation: Angle, large_arc_flag: Flag,
                  sweep_flag: Flag, start_pos: Point, control1: Point, control2: Point, end_pos: Point):
        if command is SVGCmdEnum.MOVE_TO:
            return SVGCommandMove(start_pos, end_pos)
        elif command is SVGCmdEnum.LINE_TO:
            return SVGCommandLine(start_pos, end_pos)
        elif command is SVGCmdEnum.CUBIC_BEZIER:
            return SVGCommandBezier(start_pos, control1, control2, end_pos)
        elif command is SVGCmdEnum.CLOSE_PATH:
            return SVGCommandClose(start_pos, end_pos)
        elif command is SVGCmdEnum.ELLIPTIC_ARC:
            return SVGCommandArc(start_pos, radius, x_axis_rotation, large_arc_flag, sweep_flag, end_pos)

    def draw(self, *args, **kwargs):
        from .svg_path import SVGPath
        return SVGPath([self]).draw(*args, **kwargs)

    def reverse(self):
        raise NotImplementedError

    def is_left_to(self, other: SVGCommand):
        p1, p2 = self.start_pos, other.start_pos

        if p1.y == p2.y:
            return p1.x < p2.x

        return p1.y < p2.y or (np.isclose(p1.norm(), p2.norm()) and p1.x < p2.x)

    def numericalize(self, n=256):
        raise NotImplementedError

    def get_geoms(self):
        return [self.start_pos, self.end_pos]

    def get_points_viz(self, first=False, last=False):
        from .svg_primitive import SVGCircle
        color = "red" if first else "purple" if last else "deepskyblue"  # "#C4C4C4"
        opacity = 0.75 if first or last else 1.0
        return [SVGCircle(self.end_pos, radius=Radius(0.4), color=color, fill=True, stroke_width=".1", opacity=opacity)]

    def get_handles_viz(self):
        return []

    def sample_points(self, n=10, return_array=False):
        return []

    def split(self, n=2):
        raise NotImplementedError

    def length(self):
        raise NotImplementedError

    def bbox(self):
        raise NotImplementedError


class SVGCommandLinear(SVGCommand):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def to_tensor(self, PAD_VAL=-1):
        cmd_index = SVGTensor.COMMANDS_SIMPLIFIED.index(self.command.value)
        return torch.tensor([cmd_index,
                             *([PAD_VAL] * 5),
                             *self.start_pos.to_tensor(),
                             *([PAD_VAL] * 4),
                             *self.end_pos.to_tensor()])

    def numericalize(self, n=256):
        self.start_pos.numericalize(n)
        self.end_pos.numericalize(n)

    def copy(self):
        return self.__class__(self.start_pos.copy(), self.end_pos.copy())

    def reverse(self):
        return self.__class__(self.end_pos, self.start_pos)

    def split(self, n=2):
        return [self]

    def bbox(self):
        return Bbox(self.start_pos, self.end_pos)


class SVGCommandMove(SVGCommandLinear):
    def __init__(self, start_pos: Point, end_pos: Point=None):
        if end_pos is None:
            start_pos, end_pos = Point(0.), start_pos
        super().__init__(SVGCmdEnum.MOVE_TO, [end_pos], start_pos, end_pos)

    def get_points_viz(self, first=False, last=False):
        from .svg_primitive import SVGLine
        points_viz = super().get_points_viz(first, last)
        points_viz.append(SVGLine(self.start_pos, self.end_pos, color="red", dasharray=0.5))
        return points_viz

    def bbox(self):
        return Bbox(self.end_pos, self.end_pos)


class SVGCommandLine(SVGCommandLinear):
    def __init__(self, start_pos: Point, end_pos: Point):
        super().__init__(SVGCmdEnum.LINE_TO, [end_pos], start_pos, end_pos)

    def sample_points(self, n=10, return_array=False):
        z = np.linspace(0., 1., n)

        if return_array:
            points = (1-z)[:, None] * self.start_pos.pos[None] + z[:, None] * self.end_pos.pos[None]
            return points

        points = [(1 - alpha) * self.start_pos + alpha * self.end_pos for alpha in z]
        return points

    def split(self, n=2):
        points = self.sample_points(n+1)
        return [SVGCommandLine(p1, p2) for p1, p2 in zip(points[:-1], points[1:])]

    def length(self):
        return self.start_pos.dist(self.end_pos)


class SVGCommandClose(SVGCommandLinear):
    def __init__(self, start_pos: Point, end_pos: Point):
        super().__init__(SVGCmdEnum.CLOSE_PATH, [], start_pos, end_pos)

    def get_points_viz(self, first=False, last=False):
        return []


class SVGCommandBezier(SVGCommand):
    def __init__(self, start_pos: Point, control1: Point, control2: Point, end_pos: Point):
        if control2 is None:
            control2 = control1.copy()
        super().__init__(SVGCmdEnum.CUBIC_BEZIER, [control1, control2, end_pos], start_pos, end_pos)

        self.control1 = control1
        self.control2 = control2

    @property
    def p1(self):
        return self.start_pos

    @property
    def p2(self):
        return self.end_pos

    @property
    def q1(self):
        return self.control1

    @property
    def q2(self):
        return self.control2

    def copy(self):
        return SVGCommandBezier(self.start_pos.copy(), self.control1.copy(), self.control2.copy(), self.end_pos.copy())

    def to_tensor(self, PAD_VAL=-1):
        cmd_index = SVGTensor.COMMANDS_SIMPLIFIED.index(SVGCmdEnum.CUBIC_BEZIER.value)
        return torch.tensor([cmd_index,
                             *([PAD_VAL] * 5),
                             *self.start_pos.to_tensor(),
                             *self.control1.to_tensor(),
                             *self.control2.to_tensor(),
                             *self.end_pos.to_tensor()])

    def to_vector(self):
        return np.array([
            self.start_pos.tolist(),
            self.control1.tolist(),
            self.control2.tolist(),
            self.end_pos.tolist()
        ])

    @staticmethod
    def from_vector(vector):
        return SVGCommandBezier(Point(vector[0]), Point(vector[1]), Point(vector[2]), Point(vector[3]))

    def reverse(self):
        return SVGCommandBezier(self.end_pos, self.control2, self.control1, self.start_pos)

    def numericalize(self, n=256):
        self.start_pos.numericalize(n)
        self.control1.numericalize(n)
        self.control2.numericalize(n)
        self.end_pos.numericalize(n)

    def get_geoms(self):
        return [self.start_pos, self.control1, self.control2, self.end_pos]

    def get_handles_viz(self):
        from .svg_primitive import SVGLine, SVGCircle
        anchor_1 = SVGCircle(self.control1, radius=Radius(0.4), color="lime", fill=True, stroke_width=".1")
        anchor_2 = SVGCircle(self.control2, radius=Radius(0.4), color="lime", fill=True, stroke_width=".1")

        handle_1 = SVGLine(self.start_pos, self.control1, color="grey", dasharray=0.5, stroke_width=".1")
        handle_2 = SVGLine(self.end_pos, self.control2, color="grey", dasharray=0.5, stroke_width=".1")
        return [handle_1, handle_2, anchor_1, anchor_2]

    def eval(self, t):
        return (1 - t)**3 * self.start_pos + 3 * (1 - t)**2 * t * self.control1 + 3 * (1 - t) * t**2 * self.control2 + t**3 * self.end_pos

    def derivative(self, t, n=1):
        if n == 1:
            return 3 * (1 - t)**2 * (self.control1 - self.start_pos) + 6 * (1 - t) * t * (self.control2 - self.control1) + 3 * t**2 * (self.end_pos - self.control2)
        elif n == 2:
            return 6 * (1 - t) * (self.control2 - 2 * self.control1 + self.start_pos) + 6 * t * (self.end_pos - 2 * self.control2 + self.control1)

        raise NotImplementedError

    def angle(self, other: SVGCommandBezier):
        t1, t2 = self.derivative(1.), -other.derivative(0.)
        if np.isclose(t1.norm(), 0.) or np.isclose(t2.norm(), 0.):
            return 0.
        angle = np.arccos(np.clip(t1.normalize().dot(t2.normalize()), -1., 1.))
        return np.rad2deg(angle)

    def sample_points(self, n=10, return_array=False):
        b = self.to_vector()

        z = np.linspace(0., 1., n)
        Z = np.stack([np.ones_like(z), z, z**2, z**3], axis=1)
        Q = np.array([[1., 0., 0., 0.],
                      [-3, 3., 0., 0.],
                      [3., -6, 3., 0.],
                      [-1, 3., -3, 1]])

        points = Z @ Q @ b

        if return_array:
            return points

        return [Point(p) for p in points]

    def _split_two(self, z=.5):
        b = self.to_vector()

        Q1 = np.array([[1, 0, 0, 0],
                       [-(z - 1), z, 0, 0],
                       [(z - 1) ** 2, -2 * (z - 1) * z, z ** 2, 0],
                       [-(z - 1) ** 3, 3 * (z - 1) ** 2 * z, -3 * (z - 1) * z ** 2, z ** 3]])
        Q2 = np.array([[-(z - 1) ** 3, 3 * (z - 1) ** 2 * z, -3 * (z - 1) * z ** 2, z ** 3],
                       [0, (z - 1) ** 2, -2 * (z - 1) * z, z ** 2],
                       [0, 0, -(z - 1), z],
                       [0, 0, 0, 1]])

        return SVGCommandBezier.from_vector(Q1 @ b), SVGCommandBezier.from_vector(Q2 @ b)

    def split(self, n=2):
        b_list = []
        b = self

        for i in range(n - 1):
            z = 1. / (n - i)
            b1, b = b._split_two(z)
            b_list.append(b1)
        b_list.append(b)
        return b_list

    def length(self):
        p = self.sample_points(n=100, return_array=True)
        return np.linalg.norm(p[1:] - p[:-1], axis=-1).sum()

    def bbox(self):
        return Bbox.from_points(self.find_extrema())

    def find_roots(self):
        a = 3 * (-self.p1 + 3 * self.q1 - 3 * self.q2 + self.p2)
        b = 6 * (self.p1 - 2 * self.q1 + self.q2)
        c = 3 * (self.q1 - self.p1)

        x_roots, y_roots = get_roots(a.x, b.x, c.x), get_roots(a.y, b.y, c.y)
        roots_cat = [*x_roots, *y_roots]
        roots = [root for root in roots_cat if 0 <= root <= 1]
        return roots

    def find_extrema(self):
        points = [self.start_pos, self.end_pos]
        points.extend([self.eval(root) for root in self.find_roots()])
        return points


class SVGCommandArc(SVGCommand):
    def __init__(self, start_pos: Point, radius: Radius, x_axis_rotation: Angle, large_arc_flag: Flag, sweep_flag: Flag, end_pos: Point):
        super().__init__(SVGCmdEnum.ELLIPTIC_ARC, [radius, x_axis_rotation, large_arc_flag, sweep_flag, end_pos], start_pos, end_pos)

        self.radius = radius
        self.x_axis_rotation = x_axis_rotation
        self.large_arc_flag = large_arc_flag
        self.sweep_flag = sweep_flag

    def copy(self):
        return SVGCommandArc(self.start_pos.copy(), self.radius.copy(), self.x_axis_rotation.copy(), self.large_arc_flag.copy(),
                             self.sweep_flag.copy(), self.end_pos.copy())

    def to_tensor(self, PAD_VAL=-1):
        cmd_index = SVGTensor.COMMANDS_SIMPLIFIED.index(SVGCmdEnum.ELLIPTIC_ARC.value)
        return torch.tensor([cmd_index,
                             *self.radius.to_tensor(),
                             *self.x_axis_rotation.to_tensor(),
                             *self.large_arc_flag.to_tensor(),
                             *self.sweep_flag.to_tensor(),
                             *self.start_pos.to_tensor(),
                             *([PAD_VAL] * 4),
                             *self.end_pos.to_tensor()])

    def _get_center_parametrization(self):
        r = self.radius
        p1, p2 = self.start_pos, self.end_pos

        h, m = 0.5 * (p1 - p2), 0.5 * (p1 + p2)
        p1_trans = h.rotate(-self.x_axis_rotation)

        sign = -1 if self.large_arc_flag.flag == self.sweep_flag.flag else 1
        x2, y2, rx2, ry2 = p1_trans.x**2, p1_trans.y**2, r.x**2, r.y**2
        sqrt = math.sqrt(max((rx2*ry2 - rx2*y2 - ry2*x2) / (rx2*y2 + ry2*x2), 0.))
        c_trans = sign * sqrt * Point(r.x * p1_trans.y / r.y, -r.y * p1_trans.x / r.x)

        c = c_trans.rotate(self.x_axis_rotation) + m

        d, ns = (p1_trans - c_trans) / r, -(p1_trans + c_trans) / r

        theta_1 = Point(1, 0).angle(d, signed=True)

        delta_theta = d.angle(ns, signed=True)
        delta_theta.deg %= 360
        if self.sweep_flag.flag == 0 and delta_theta.deg > 0:
            delta_theta = delta_theta - Angle(360)
        if self.sweep_flag == 1 and delta_theta.deg < 0:
            delta_theta = delta_theta + Angle(360)

        return c, theta_1, delta_theta

    def _get_point(self, c: Point, t: float_type):
        r = self.radius
        return c + Point(r.x * np.cos(t), r.y * np.sin(t)).rotate(self.x_axis_rotation)

    def _get_derivative(self, t: float_type):
        r = self.radius
        return Point(-r.x * np.sin(t), r.y * np.cos(t)).rotate(self.x_axis_rotation)

    def to_beziers(self):
        """ References:
        https://www.w3.org/TR/2018/CR-SVG2-20180807/implnote.html
        https://mortoray.com/2017/02/16/rendering-an-svg-elliptical-arc-as-bezier-curves/
        http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf """
        beziers = []

        c, theta_1, delta_theta = self._get_center_parametrization()
        nb_curves = max(int(abs(delta_theta.deg) // 45), 1)
        etas = [theta_1 + i * delta_theta / nb_curves for i in range(nb_curves+1)]
        for eta_1, eta_2 in zip(etas[:-1], etas[1:]):
            e1, e2 = eta_1.rad, eta_2.rad
            alpha = np.sin(e2 - e1) * (math.sqrt(4 + 3 * np.tan(0.5 * (e2 - e1))**2) - 1) / 3
            p1, p2 = self._get_point(c, e1), self._get_point(c, e2)
            q1 = p1 + alpha * self._get_derivative(e1)
            q2 = p2 - alpha * self._get_derivative(e2)
            beziers.append(SVGCommandBezier(p1, q1, q2, p2))

        return beziers

    def reverse(self):
        return SVGCommandArc(self.end_pos, self.radius, self.x_axis_rotation, self.large_arc_flag, ~self.sweep_flag, self.start_pos)

    def numericalize(self, n=256):
        raise NotImplementedError

    def get_geoms(self):
        return [self.start_pos, self.radius, self.x_axis_rotation, self.large_arc_flag, self.sweep_flag, self.end_pos]

    def split(self, n=2):
        raise NotImplementedError

    def sample_points(self, n=10, return_array=False):
        raise NotImplementedError