File size: 869 Bytes
506bf70
6ed6ec2
506bf70
b7dd046
6ed6ec2
506bf70
 
 
4b9fc54
2e055ce
926c709
 
 
 
 
 
 
6ed6ec2
b7dd046
97f4aca
 
506bf70
6ed6ec2
 
 
 
 
506bf70
71f8810
0515ae8
6ed6ec2
506bf70
b9d5dbb
71f8810
5ee37c0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.

# %% auto 0
__all__ = ['learn', 'categories', 'image', 'label', 'examples', 'intf', 'is_cat', 'classify_image']

# %% app.ipynb 22
from fastai.vision.all import *
import gradio as gr


import fastai
import fastcore
import torch

print(f"fastai: {fastai.__version__}")
print(f"fastcore: {fastcore.__version__}")
print(f"torch: {torch.__version__}")

def is_cat(x): return x[0].isupper()
learn = load_learner('model.pkl') 

# %% app.ipynb 37
categories = ('Dog', 'Cat')
def classify_image(img):
    pred, idx, probs = learn.predict(img)
    return dict(zip(categories, map(float, probs)))

# %% app.ipynb 39
image = gr.Image(image_mode="RGB", type="pil")
label = gr.Label()

examples = ['image1.png']

intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
intf.launch(inline=False)