Spaces:
Runtime error
Runtime error
File size: 7,370 Bytes
03561be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import copy
import json
import os
import random
from collections import defaultdict
import torch
import torch.nn.functional as F
from PIL import Image
from .vqa_dataset import VQADataset
QUESTIONS = [
"Is this true?",
"Is this right?",
"Can you confirm this information?" "Do you agree with this statement?",
"Does this align with your understanding?",
"How do you interpret this information?",
"Does this align with your understanding?",
"Can you confirm this?",
"Is this statement correct?",
"Could you verify this information?",
"Do you agree with this?",
"Is this accurate?",
"Can you validate this claim?",
"Are these details valid?",
"Is this factually correct?",
"Is the following information correct?",
"Could you please verify this fact?",
"Do you agree with this assertion?",
"Are these details accurate?",
"Does this claim hold true?",
]
class NLVRv1Dataset(VQADataset):
"""Visual Reasoning Dataset."""
def __init__(self, tokenizer, vis_processor, vis_root, ann_paths, **kwargs):
super().__init__(tokenizer, vis_processor, vis_root, ann_paths=[], **kwargs)
self.annotation = self.load_annotations(ann_paths)
if self.sample_image:
print("randomly sample one annotation for each image")
self.annotation = self.parse_annotation(self.annotation)
self._add_instance_ids()
@staticmethod
def load_annotations(ann_paths):
annotation = []
for ann_path in ann_paths:
if "train.json" in ann_path:
split = "train"
elif "dev.json" in ann_path:
split = "dev"
elif "test.json" in ann_path:
split = "test"
else:
raise ValueError(f"Unknown split for {ann_path}")
with open(ann_path, "r") as f:
for line in f.readlines():
line = line.strip()
if len(line) != 0:
ann = json.loads(line)
ann["split"] = split
annotation.append(ann)
return annotation
def parse_annotation(self, annotation):
image_list = defaultdict(list)
for ann in annotation:
img_key = f"{ann['split']}-{ann['identifier']}"
image_list[img_key].append(ann)
annotation = []
for ann_list in image_list.values():
annotation.append(random.choice(ann_list))
return annotation
def process_text(self, ann):
question = ann["sentence"] + " " + random.choice(QUESTIONS)
true_answer = ann["label"]
if random.random() < self.option_prob:
instruction = self.prompter(question, ["true", "false"])
else:
instruction = self.prompter(question)
return dict(instruction=instruction, answer=true_answer)
def process_image(self, ann):
# each question have 6 images, we can random select one of them.
# TODO: check whether using all 6 images?
random_id = random.randint(0, 5)
image_name = f"{ann['split']}-{ann['identifier']}-{random_id}.png"
image_path = os.path.join(self.vis_root, ann["split"], "images", ann["directory"], image_name)
image = Image.open(image_path).convert("RGB")
image = self.vis_processor(image)
return image
class NLVRv2Dataset(VQADataset):
"""Visual Reasoning Dataset."""
def __init__(self, tokenizer, vis_processor, vis_root, ann_paths, **kwargs):
super().__init__(tokenizer, vis_processor, vis_root, ann_paths, **kwargs)
self.flip_prob = 0.5
def parse_annotation(self, annotation):
image_list = defaultdict(list)
for ann in annotation:
image_list[ann["images"][0]].append(ann)
# image_name_list = list(image_list.keys())
annotation = []
for ann_list in image_list.values():
annotation.append(random.choice(ann_list))
return annotation
def process_text(self, ann):
question = ann["sentence"] + " " + random.choice(QUESTIONS)
true_answer = ann["label"]
if random.random() < self.option_prob:
instruction = self.prompter(question, ["true", "false"])
else:
instruction = self.prompter(question)
return dict(instruction=instruction, answer=true_answer)
def process_image(self, ann):
image_0_path = os.path.join(self.vis_root, ann["images"][0])
image_1_path = os.path.join(self.vis_root, ann["images"][1])
image_0 = Image.open(image_0_path).convert("RGB")
image_1 = Image.open(image_1_path).convert("RGB")
image_0 = self.vis_processor(image_0)
image_1 = self.vis_processor(image_1)
return image_0, image_1
@staticmethod
def _flip(samples):
sentence = samples["sentence"]
image0, image1 = samples["image0"], samples["image1"]
if "left" not in sentence and "right" not in sentence:
if random.random() < 0.5:
image0, image1 = image1, image0
else:
if random.random() < 0.5:
sentence = sentence.replace("left", "[TEMP_TOKEN]")
sentence = sentence.replace("right", "left")
sentence = sentence.replace("[TEMP_TOKEN]", "right")
image0, image1 = image1, image0
samples["sentence"] = sentence
samples["image0"] = image0
samples["image1"] = image1
return samples
def __getitem__(self, index):
ann = copy.deepcopy(self.annotation[index])
image_0, image_1 = self.process_image(ann)
if random.random() < self.flip_prob:
samples = self._flip({"sentence": ann["sentence"], "image0": image_0, "image1": image_1})
image_0, image_1 = samples["image0"], samples["image1"]
ann["sentence"] = samples["sentence"]
# concat
# TODO: https://github.com/salesforce/LAVIS/blob/main/lavis/models/blip_models/blip_nlvr.py
# model logic need update if using nlvr2
image = torch.cat([image_0, image_1], dim=2)
image = F.interpolate(image[None, ...], size=(image_0.shape[1], image_0.shape[2]))[0]
text = self.process_text(ann)
res = self.tokenize(text)
res.update(image=image)
res.update(text)
return res
def build_nlvrv1_dataset(
tokenizer,
vis_processor,
vis_root="data/nlvr",
ann_paths=["data/nlvr//train/train.json"],
sample_image=False,
):
return NLVRv1Dataset(
tokenizer=tokenizer,
vis_processor=vis_processor,
vis_root=vis_root,
ann_paths=ann_paths,
sample_image=sample_image,
)
def build_nlvrv2_dataset(
tokenizer,
vis_processor,
vis_root="data/nlvr2",
ann_paths=["data/nlvr2/annotations/nlvr_train.json"],
sample_image=False,
):
return NLVRv2Dataset(
tokenizer=tokenizer,
vis_processor=vis_processor,
vis_root=vis_root,
ann_paths=ann_paths,
sample_image=sample_image,
)
|