Spaces:
Runtime error
Runtime error
File size: 13,805 Bytes
03561be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import os
import gradio as gr
import torch
from PIL import Image
from mmgpt.models.builder import create_model_and_transforms
TEMPLATE = "Below is an instruction that describes a task. Write a response that appropriately completes the request."
response_split = "### Response:"
class Inferencer:
def __init__(self, finetune_path, llama_path, open_flamingo_path):
ckpt = torch.load(finetune_path, map_location="cpu", weights_only=False)
if "model_state_dict" in ckpt:
state_dict = ckpt["model_state_dict"]
# remove the "module." prefix
state_dict = {
k[7:]: v
for k, v in state_dict.items() if k.startswith("module.")
}
else:
state_dict = ckpt
tuning_config = ckpt.get("tuning_config")
if tuning_config is None:
print("tuning_config not found in checkpoint")
else:
print("tuning_config found in checkpoint: ", tuning_config)
model, image_processor, tokenizer = create_model_and_transforms(
model_name="open_flamingo",
clip_vision_encoder_path="ViT-L-14",
clip_vision_encoder_pretrained="openai",
lang_encoder_path=llama_path,
tokenizer_path=llama_path,
pretrained_model_path=open_flamingo_path,
tuning_config=tuning_config,
)
model.load_state_dict(state_dict, strict=False)
model.half()
device = torch.device("cpu")
model = model.to(device)
# model = model.to("cuda")
model.eval()
tokenizer.padding_side = "left"
tokenizer.add_eos_token = False
self.model = model
self.image_processor = image_processor
self.tokenizer = tokenizer
def __call__(self, prompt, imgpaths, max_new_token, num_beams, temperature,
top_k, top_p, do_sample):
device = torch.device("cpu")
if len(imgpaths) > 1:
raise gr.Error(
"Current only support one image, please clear gallery and upload one image"
)
lang_x = self.tokenizer([prompt], return_tensors="pt")
if len(imgpaths) == 0 or imgpaths is None:
for layer in self.model.lang_encoder._get_decoder_layers():
layer.condition_only_lang_x(True)
output_ids = self.model.lang_encoder.generate(
input_ids=lang_x["input_ids"].to(device),
attention_mask=lang_x["attention_mask"].to(device),
max_new_tokens=max_new_token,
num_beams=num_beams,
temperature=temperature,
top_k=top_k,
top_p=top_p,
do_sample=do_sample,
)[0]
for layer in self.model.lang_encoder._get_decoder_layers():
layer.condition_only_lang_x(False)
else:
images = (Image.open(fp) for fp in imgpaths)
vision_x = [self.image_processor(im).unsqueeze(0) for im in images]
vision_x = torch.cat(vision_x, dim=0)
vision_x = vision_x.unsqueeze(1).unsqueeze(0).half()
output_ids = self.model.generate(
vision_x=vision_x.to(device),
lang_x=lang_x["input_ids"].to(device),
attention_mask=lang_x["attention_mask"].to(device),
max_new_tokens=max_new_token,
num_beams=num_beams,
temperature=temperature,
top_k=top_k,
top_p=top_p,
do_sample=do_sample,
)[0]
generated_text = self.tokenizer.decode(
output_ids, skip_special_tokens=True)
# print(generated_text)
result = generated_text.split(response_split)[-1].strip()
return result
class PromptGenerator:
def __init__(
self,
prompt_template=TEMPLATE,
ai_prefix="Response",
user_prefix="Instruction",
sep: str = "\n\n### ",
buffer_size=0,
):
self.all_history = list()
self.ai_prefix = ai_prefix
self.user_prefix = user_prefix
self.buffer_size = buffer_size
self.prompt_template = prompt_template
self.sep = sep
def add_message(self, role, message):
self.all_history.append([role, message])
def get_images(self):
img_list = list()
if self.buffer_size > 0:
all_history = self.all_history[-2 * (self.buffer_size + 1):]
elif self.buffer_size == 0:
all_history = self.all_history[-2:]
else:
all_history = self.all_history[:]
for his in all_history:
if type(his[-1]) == tuple:
img_list.append(his[-1][-1])
return img_list
def get_prompt(self):
format_dict = dict()
if "{user_prefix}" in self.prompt_template:
format_dict["user_prefix"] = self.user_prefix
if "{ai_prefix}" in self.prompt_template:
format_dict["ai_prefix"] = self.ai_prefix
prompt_template = self.prompt_template.format(**format_dict)
ret = prompt_template
if self.buffer_size > 0:
all_history = self.all_history[-2 * (self.buffer_size + 1):]
elif self.buffer_size == 0:
all_history = self.all_history[-2:]
else:
all_history = self.all_history[:]
context = []
have_image = False
for role, message in all_history[::-1]:
if message:
if type(message) is tuple and message[
1] is not None and not have_image:
message, _ = message
context.append(self.sep + "Image:\n<image>" + self.sep +
role + ":\n" + message)
else:
context.append(self.sep + role + ":\n" + message)
else:
context.append(self.sep + role + ":\n")
ret += "".join(context[::-1])
return ret
def to_gradio_chatbot(prompt_generator):
ret = []
for i, (role, msg) in enumerate(prompt_generator.all_history):
if i % 2 == 0:
if type(msg) is tuple:
import base64
from io import BytesIO
msg, image = msg
if type(image) is str:
from PIL import Image
image = Image.open(image)
max_hw, min_hw = max(image.size), min(image.size)
aspect_ratio = max_hw / min_hw
max_len, min_len = 800, 400
shortest_edge = int(
min(max_len / aspect_ratio, min_len, min_hw))
longest_edge = int(shortest_edge * aspect_ratio)
H, W = image.size
if H > W:
H, W = longest_edge, shortest_edge
else:
H, W = shortest_edge, longest_edge
image = image.resize((H, W))
# image = image.resize((224, 224))
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
msg = msg + img_str
ret.append([msg, None])
else:
ret[-1][-1] = msg
return ret
def bot(
text,
image,
state,
prompt,
ai_prefix,
user_prefix,
seperator,
history_buffer,
max_new_token,
num_beams,
temperature,
top_k,
top_p,
do_sample,
):
state.prompt_template = prompt
state.ai_prefix = ai_prefix
state.user_prefix = user_prefix
state.sep = seperator
state.buffer_size = history_buffer
if image:
state.add_message(user_prefix, (text, image))
else:
state.add_message(user_prefix, text)
state.add_message(ai_prefix, None)
inputs = state.get_prompt()
image_paths = state.get_images()[-1:]
inference_results = inferencer(inputs, image_paths, max_new_token,
num_beams, temperature, top_k, top_p,
do_sample)
state.all_history[-1][-1] = inference_results
memory_allocated = str(round(torch.cuda.memory_allocated() / 1024**3,
2)) + 'GB'
return state, to_gradio_chatbot(state), "", None, inputs, memory_allocated
def clear(state):
state.all_history = []
return state, to_gradio_chatbot(state), "", None, ""
title_markdown = ("""
# 🤖 Multi-modal GPT
[[Project]](https://github.com/open-mmlab/Multimodal-GPT.git)""")
def build_conversation_demo():
with gr.Blocks(title="Multi-modal GPT") as demo:
gr.Markdown(title_markdown)
state = gr.State(PromptGenerator())
with gr.Row():
with gr.Column(scale=3):
memory_allocated = gr.Textbox(
value=init_memory, label="Memory")
imagebox = gr.Image(type="filepath")
# TODO config parameters
with gr.Accordion(
"Parameters",
open=True,
):
max_new_token_bar = gr.Slider(
0, 1024, 512, label="max_new_token", step=1)
num_beams_bar = gr.Slider(
0.0, 10, 3, label="num_beams", step=1)
temperature_bar = gr.Slider(
0.0, 1.0, 1.0, label="temperature", step=0.01)
topk_bar = gr.Slider(0, 100, 20, label="top_k", step=1)
topp_bar = gr.Slider(0, 1.0, 1.0, label="top_p", step=0.01)
do_sample = gr.Checkbox(True, label="do_sample")
with gr.Accordion(
"Prompt",
open=False,
):
with gr.Row():
ai_prefix = gr.Text("Response", label="AI Prefix")
user_prefix = gr.Text(
"Instruction", label="User Prefix")
seperator = gr.Text("\n\n### ", label="Seperator")
history_buffer = gr.Slider(
-1, 10, -1, label="History buffer", step=1)
prompt = gr.Text(TEMPLATE, label="Prompt")
model_inputs = gr.Textbox(label="Actual inputs for Model")
with gr.Column(scale=6):
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot(elem_id="chatbot", type="messages")
with gr.Row():
with gr.Column(scale=8):
textbox = gr.Textbox(
show_label=False,
placeholder="Enter text and press ENTER",
container=False)
submit_btn = gr.Button(value="Submit")
clear_btn = gr.Button(value="🗑️ Clear history")
cur_dir = os.path.dirname(os.path.abspath(__file__))
gr.Examples(
examples=[
[
f"{cur_dir}/docs/images/demo_image.jpg",
"What is in this image?"
],
],
inputs=[imagebox, textbox],
)
textbox.submit(
bot,
[
textbox,
imagebox,
state,
prompt,
ai_prefix,
user_prefix,
seperator,
history_buffer,
max_new_token_bar,
num_beams_bar,
temperature_bar,
topk_bar,
topp_bar,
do_sample,
],
[
state, chatbot, textbox, imagebox, model_inputs,
memory_allocated
],
)
submit_btn.click(
bot,
[
textbox,
imagebox,
state,
prompt,
ai_prefix,
user_prefix,
seperator,
history_buffer,
max_new_token_bar,
num_beams_bar,
temperature_bar,
topk_bar,
topp_bar,
do_sample,
],
[
state, chatbot, textbox, imagebox, model_inputs,
memory_allocated
],
)
clear_btn.click(clear, [state],
[state, chatbot, textbox, imagebox, model_inputs])
return demo
if __name__ == "__main__":
llama_path = "checkpoints/llama-7b_hf"
open_flamingo_path = "checkpoints/OpenFlamingo-9B/checkpoint.pt"
finetune_path = "checkpoints/mmgpt-lora-v0-release.pt"
inferencer = Inferencer(
llama_path=llama_path,
open_flamingo_path=open_flamingo_path,
finetune_path=finetune_path)
init_memory = str(round(torch.cuda.memory_allocated() / 1024**3, 2)) + 'GB'
demo = build_conversation_demo()
demo.queue(max_size=3)
IP = "0.0.0.0"
PORT = 8997
demo.launch(server_name=IP, server_port=PORT, share=True)
|