File size: 2,194 Bytes
6fef025 f5b8400 6fef025 f5b8400 6fef025 f5b8400 6fef025 f5b8400 6fef025 f5b8400 6fef025 f5b8400 6fef025 f5b8400 6fef025 f5b8400 6b70d61 f5b8400 6b70d61 f5b8400 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
import gradio as gr
from random import randint
from all_models import models
def load_fn(models):
global models_load
models_load = {}
for model in models:
if model not in models_load.keys():
try:
m = gr.load(f'models/{model}')
except Exception as error:
m = gr.Interface(lambda txt: None, ['text'], ['image'])
models_load.update({model: m})
load_fn(models)
num_models = 6
default_models = models[:num_models]
def extend_choices(choices):
return choices + (num_models - len(choices)) * ['NA']
def update_imgbox(choices):
choices_plus = extend_choices(choices)
return [gr.Image(None, label = m, visible = (m != 'NA')) for m in choices_plus]
def gen_fn(model_str, prompt):
if model_str == 'NA':
return None
noise = str(randint(0, 99999999999))
return models_load[model_str](f'{prompt} {noise}')
with gr.Blocks() as demo:
with gr.Tab('The Dream'):
txt_input = gr.Textbox(label = 'Prompt text')
gen_button = gr.Button('Generate')
stop_button = gr.Button('Stop', variant = 'secondary', interactive = False)
gen_button.click(lambda s: gr.update(interactive = True), None, stop_button)
with gr.Row():
output = [gr.Image(label = m) for m in default_models]
current_models = [gr.Textbox(m, visible = False) for m in default_models]
model_choice.change(update_imgbox, model_choice, output)
model_choice.change(extend_choices, model_choice, current_models)
for m, o in zip(current_models, output):
gen_event = gen_button.click(gen_fn, [m, txt_input], o)
stop_button.click(lambda s: gr.update(interactive = False), None, stop_button, cancels = [gen_event])
with gr.Accordion('Model selection'):
model_choice = gr.CheckboxGroup(models, label = f'Choose up to {num_models} different models', value = default_models, multiselect = True, max_choices = num_models, interactive = True, filterable = False)
demo.queue(concurrency_count = 200)
demo.launch() |