File size: 5,408 Bytes
d81b645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Import Libraries\n",
    "import pandas as pd\n",
    "import pickle"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [],
   "source": [
    "with open('model.pkl', 'rb') as model_pipeline:\n",
    "    model = pickle.load(model_pipeline)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>warehouse_block</th>\n",
       "      <th>mode_of_shipment</th>\n",
       "      <th>customer_care_calls</th>\n",
       "      <th>customer_rating</th>\n",
       "      <th>cost_of_the_product</th>\n",
       "      <th>prior_purchases</th>\n",
       "      <th>product_importance</th>\n",
       "      <th>gender</th>\n",
       "      <th>discount_offered</th>\n",
       "      <th>weight_in_gms</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>A</td>\n",
       "      <td>Flight</td>\n",
       "      <td>1</td>\n",
       "      <td>5</td>\n",
       "      <td>300</td>\n",
       "      <td>6</td>\n",
       "      <td>medium</td>\n",
       "      <td>M</td>\n",
       "      <td>30</td>\n",
       "      <td>3500</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>D</td>\n",
       "      <td>Road</td>\n",
       "      <td>5</td>\n",
       "      <td>1</td>\n",
       "      <td>20</td>\n",
       "      <td>2</td>\n",
       "      <td>low</td>\n",
       "      <td>F</td>\n",
       "      <td>10</td>\n",
       "      <td>3800</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "  warehouse_block mode_of_shipment  customer_care_calls  customer_rating  \\\n",
       "0               A           Flight                    1                5   \n",
       "1               D             Road                    5                1   \n",
       "\n",
       "   cost_of_the_product  prior_purchases product_importance gender  \\\n",
       "0                  300                6             medium      M   \n",
       "1                   20                2                low      F   \n",
       "\n",
       "   discount_offered  weight_in_gms  \n",
       "0                30           3500  \n",
       "1                10           3800  "
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data_inf = {\n",
    "    'warehouse_block':['A','D'] , # Block Warehouse A, Block Warehouse D\n",
    "    'mode_of_shipment': ['Flight','Road'], # Shipment Flight, Road\n",
    "    'customer_care_calls':[1,5], # Enquiry Calls 1 Time, Enquiry Calls 5 Times\n",
    "    'customer_rating': [5,1],  # Rating 5 (highest), Rating 1 (Lowest)\n",
    "    'cost_of_the_product':[300,20], # Cost $300, Cost $20\n",
    "    'prior_purchases':[6,2], # Prior Purchase 6 Times Before, Prior Purchase 2 Times Before\n",
    "    'product_importance':['medium','low'], # Importance Product Medium, Importance Product Low\n",
    "    'gender':['M','F'], # Male, Female\n",
    "    'discount_offered':[30,10], # Discount 30%, Discount 10%\n",
    "    'weight_in_gms':[3500,3800], # Weight 3500 grams, Weight 3800 grams\n",
    "}\n",
    "data_inf = pd.DataFrame(data_inf)\n",
    "data_inf"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [],
   "source": [
    "def label_cluster(cluster_number):\n",
    "    if cluster_number == 0:\n",
    "        return \"Shipping Not On Time !\"\n",
    "    elif cluster_number == 1:\n",
    "        return \"Shipping On Time !\"\n",
    "    else:\n",
    "        return \"Unknown\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['Shipping On Time !', 'Shipping Not On Time !']\n"
     ]
    }
   ],
   "source": [
    "data_inf_pred = model.predict(data_inf)\n",
    "data_inf_pred\n",
    "\n",
    "labels = [label_cluster(cluster) for cluster in data_inf_pred]\n",
    "print(labels)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}