Spaces:
Runtime error
Runtime error
File size: 1,339 Bytes
df2accb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import json
import os
from abc import abstractmethod
from pathlib import Path
import json5
import torch
import yaml
# TODO: for training and validating
class BaseDataset(torch.utils.data.Dataset):
r"""Base dataset for training and validating."""
def __init__(self, args, cfg, is_valid=False):
pass
class BaseTestDataset(torch.utils.data.Dataset):
r"""Test dataset for inference."""
def __init__(self, args=None, cfg=None, infer_type="from_dataset"):
assert infer_type in ["from_dataset", "from_file"]
self.args = args
self.cfg = cfg
self.infer_type = infer_type
@abstractmethod
def __getitem__(self, index):
pass
def __len__(self):
return len(self.metadata)
def get_metadata(self):
path = Path(self.args.source)
if path.suffix == ".json" or path.suffix == ".jsonc":
metadata = json5.load(open(self.args.source, "r"))
elif path.suffix == ".yaml" or path.suffix == ".yml":
metadata = yaml.full_load(open(self.args.source, "r"))
else:
raise ValueError(f"Unsupported file type: {path.suffix}")
return metadata
|