Spaces:
Runtime error
Runtime error
File size: 20,016 Bytes
df2accb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import torch
import numpy as np
import yaml
import copy
from tqdm import tqdm
from torchaudio.compliance import kaldi
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader
from fairseq import checkpoint_utils
from transformers import AutoModel, Wav2Vec2FeatureExtractor
from utils.io_optim import (
TorchaudioDataset,
LibrosaDataset,
FFmpegDataset,
collate_batch,
)
from modules import whisper_extractor as whisper
from modules.wenet_extractor.utils.init_model import init_model
from modules.wenet_extractor.utils.checkpoint import load_checkpoint
"""
Extractor for content features
1. whisper
2. contentvec
3. wenet
4. mert
Pipeline:
in preprocess.py:
call extract_utt_content_features() to extract content features for each utterance
extract_utt_content_features() envelopes the following steps:
1. load the model (whisper, contentvec, wenet)
2. extract the content features
3. save the content features into files
in svc_dataset.py:
call offline_align() to align the content features to the given target length
"""
"""
Extractor Usage:
1. initialize an instance of extractor
extractor = WhisperExtractor(cfg)
2. load the specified model
extractor.load_model()
3. extract the content features
extractor.extract_content(utt) for single utterance
extractor.extract_content_batch(utts) for batch utterances
4. save the content features
extractor.save_feature(utt, content_feature) for single utterance
"""
class BaseExtractor:
def __init__(self, cfg):
self.cfg = cfg
self.extractor_type = None
self.model = None
def offline_align(self, content, target_len):
"""
args:
content: (source_len, dim)
target_len: target length
return:
mapped_feature: (target_len, dim)
"""
target_hop = self.cfg.preprocess.hop_size
assert self.extractor_type in ["whisper", "contentvec", "wenet"]
if self.extractor_type == "whisper":
source_hop = (
self.cfg.preprocess.whisper_frameshift
* self.cfg.preprocess.whisper_downsample_rate
* self.cfg.preprocess.sample_rate
)
elif self.extractor_type == "contentvec":
source_hop = (
self.cfg.preprocess.contentvec_frameshift
* self.cfg.preprocess.sample_rate
)
elif self.extractor_type == "wenet":
source_hop = (
self.cfg.preprocess.wenet_frameshift
* self.cfg.preprocess.wenet_downsample_rate
* self.cfg.preprocess.sample_rate
)
source_hop = int(source_hop)
factor = np.gcd(source_hop, target_hop)
source_hop //= factor
target_hop //= factor
# (source_len, 256)
_, width = content.shape
# slice the content from padded feature
source_len = min(target_len * target_hop // source_hop + 1, len(content))
# const ~= target_len * target_hop
const = source_len * source_hop // target_hop * target_hop
# (source_len * source_hop, dim)
up_sampling_feats = np.repeat(content, source_hop, axis=0)
# (const, dim) -> (const/target_hop, target_hop, dim) -> (const/target_hop, dim)
down_sampling_feats = np.average(
up_sampling_feats[:const].reshape(-1, target_hop, width), axis=1
)
err = abs(target_len - len(down_sampling_feats))
if err > 8:
# err_log_dir is indeterminate
err_log_dir = os.path.join(
self.cfg.preprocess.processed_dir, "align_max_err.log"
)
try:
with open(err_log_dir, "r") as f:
err_num = int(f.read())
except:
with open(err_log_dir, "w") as f:
f.write("0")
err_num = 0
if err > err_num:
with open(err_log_dir, "w") as f:
f.write(str(err))
if len(down_sampling_feats) < target_len:
# (1, dim) -> (err, dim)
end = down_sampling_feats[-1][None, :].repeat(err, axis=0)
down_sampling_feats = np.concatenate([down_sampling_feats, end], axis=0)
# (target_len, dim)
mapped_feature = down_sampling_feats[:target_len]
return mapped_feature
def save_feature(self, utt, content_feature):
"""Save a single utternace to path {cfg.preprocess.processed_dir}
Args:
utt (dict): one item in metadata, containing information for one utterance
content_feature (tensor): content feature of one utterance
"""
uid = utt["Uid"]
assert self.extractor_type != None
out_dir = os.path.join(
self.cfg.preprocess.processed_dir, utt["Dataset"], self.extractor_type
)
os.makedirs(out_dir, exist_ok=True)
save_path = os.path.join(out_dir, uid + ".npy")
# only keep effective parts
duration = utt["Duration"]
if self.extractor_type == "whisper":
frameshift = (
self.cfg.preprocess.whisper_frameshift
* self.cfg.preprocess.whisper_downsample_rate
) # 20ms
elif self.extractor_type == "contentvec":
frameshift = self.cfg.preprocess.contentvec_frameshift # 20ms
elif self.extractor_type == "wenet":
frameshift = (
self.cfg.preprocess.wenet_frameshift
* self.cfg.preprocess.wenet_downsample_rate
) # 40ms
elif self.extractor_type == "mert":
frameshift = self.cfg.preprocess.mert_frameshift
else:
raise NotImplementedError
# calculate the number of valid frames
num_frames = int(np.ceil((duration - frameshift) / frameshift)) + 1
# (num_frames, dim) -> (valid_frames, dim)
assert (
len(content_feature.shape) == 2
), "content feature shape error, it should be (num_frames, dim)"
content_feature = content_feature[:num_frames, :]
np.save(save_path, content_feature.cpu().detach().numpy())
class WhisperExtractor(BaseExtractor):
def __init__(self, config):
super(WhisperExtractor, self).__init__(config)
self.extractor_type = "whisper"
def load_model(self):
# load whisper checkpoint
print("Loading Whisper Model...")
checkpoint_file = (
self.cfg.preprocess.whisper_model_path
if "whisper_model_path" in self.cfg.preprocess
else None
)
model = whisper.load_model(
self.cfg.preprocess.whisper_model, checkpoint_file=checkpoint_file
)
if torch.cuda.is_available():
print("Using GPU...\n")
model = model.cuda()
else:
print("Using CPU...\n")
self.model = model.eval()
def extract_content_features(self, wavs, lens):
"""extract content features from a batch of dataloader
Args:
wavs: tensor (batch_size, T)
lens: list
"""
# wavs: (batch, max_len)
wavs = whisper.pad_or_trim(wavs)
# batch_mel: (batch, 80, 3000)
batch_mel = whisper.log_mel_spectrogram(wavs).to(self.model.device)
with torch.no_grad():
# (batch, 1500, 1024)
features = self.model.embed_audio(batch_mel)
return features
class ContentvecExtractor(BaseExtractor):
def __init__(self, cfg):
super(ContentvecExtractor, self).__init__(cfg)
self.extractor_type = "contentvec"
def load_model(self):
assert self.model == None
# Load model
ckpt_path = self.cfg.preprocess.contentvec_file
print("Load Contentvec Model...")
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
[ckpt_path],
suffix="",
)
model = models[0]
model.eval()
if torch.cuda.is_available():
# print("Using GPU...\n")
model = model.cuda()
self.model = model
def extract_content_features(self, wavs, lens):
"""extract content features from a batch of dataloader
Args:
wavs: tensor (batch, T)
lens: list
"""
device = next(self.model.parameters()).device
wavs = wavs.to(device) # (batch, max_len)
padding_mask = torch.eq(wavs, torch.zeros_like(wavs)).to(device)
with torch.no_grad():
logits = self.model.extract_features(
source=wavs, padding_mask=padding_mask, output_layer=12
)
# feats: (batch, T, 256)
feats = self.model.final_proj(logits[0])
return feats
class WenetExtractor(BaseExtractor):
def __init__(self, config):
super(WenetExtractor, self).__init__(config)
self.extractor_type = "wenet"
def load_model(self):
wenet_cfg = self.cfg.preprocess.wenet_config
wenet_model_path = self.cfg.preprocess.wenet_model_path
# load Wenet config
with open(wenet_cfg, "r") as w:
wenet_configs = yaml.load(w, Loader=yaml.FullLoader)
self.extract_conf = copy.deepcopy(wenet_configs["dataset_conf"])
print("Loading Wenet Model...")
self.model = init_model(wenet_configs)
load_checkpoint(self.model, wenet_model_path)
if torch.cuda.is_available():
print("Using GPU...\n")
self.model = self.model.cuda()
else:
print("Using CPU...\n")
self.model = self.model.eval()
def extract_content_features(self, wavs, lens):
"""extract content features from a batch of dataloader
Args:
wavs: tensor
lens: list
"""
feats_list = []
lengths_list = []
device = next(self.model.parameters()).device
# Extract fbank/mfcc features by kaldi
assert self.extract_conf is not None, "load model first!"
feats_type = self.extract_conf.get("feats_type", "fbank")
assert feats_type in ["fbank", "mfcc"]
for idx, wav in enumerate(wavs):
# wav: (T)
wav = wav[: lens[idx]].to(device)
# pad one frame to compensate for the frame cut off after feature extraction
pad_tensor = torch.zeros(160, device=wav.device)
wav = torch.cat((wav, pad_tensor), dim=-1)
wav *= 1 << 15
wav = wav.unsqueeze(0) # (T) -> (1, T)
if feats_type == "fbank":
fbank_conf = self.extract_conf.get("fbank_conf", {})
feat = kaldi.fbank(
wav,
sample_frequency=16000,
num_mel_bins=fbank_conf["num_mel_bins"],
frame_length=fbank_conf["frame_length"],
frame_shift=fbank_conf["frame_shift"],
dither=fbank_conf["dither"],
)
elif feats_type == "mfcc":
mfcc_conf = self.extract_conf.get("mfcc", {})
feat = kaldi.mfcc(
wav,
sample_frequency=16000,
num_mel_bins=mfcc_conf["num_mel_bins"],
frame_length=mfcc_conf["frame_length"],
frame_shift=mfcc_conf["frame_shift"],
dither=mfcc_conf["dither"],
num_ceps=mfcc_conf.get("num_ceps", 40),
high_freq=mfcc_conf.get("high_freq", 0.0),
low_freq=mfcc_conf.get("low_freq", 20.0),
)
feats_list.append(feat)
lengths_list.append(feat.shape[0])
feats_lengths = torch.tensor(lengths_list, dtype=torch.int32).to(device)
feats_tensor = pad_sequence(feats_list, batch_first=True).to(
device
) # (batch, len, 80)
features = self.model.encoder_extractor(
feats_tensor,
feats_lengths,
decoding_chunk_size=-1,
num_decoding_left_chunks=-1,
simulate_streaming=False,
)
return features
class MertExtractor(BaseExtractor):
def __init__(self, cfg):
super(MertExtractor, self).__init__(cfg)
self.extractor_type = "mert"
self.preprocessor = None
def load_model(self):
assert self.model == None
assert self.preprocessor == None
print("Loading MERT Model: ...", self.cfg.preprocess.mert_model)
local_mert_path = "/mnt/workspace/fangzihao/acce/Amphion/pretrained/MERT"
model_name = self.cfg.preprocess.mert_model
model = AutoModel.from_pretrained(local_mert_path, trust_remote_code=True)
if torch.cuda.is_available():
model = model.cuda()
preprocessor = Wav2Vec2FeatureExtractor.from_pretrained(
local_mert_path, trust_remote_code=True
)
self.model = model
self.preprocessor = preprocessor
def extract_content_features(self, wavs, lens):
"""extract content features from a batch of dataloader
Args:
wavs: tensor (batch, T)
lens: list
"""
with torch.no_grad():
sample_rate = self.preprocessor.sampling_rate
device = next(self.model.parameters()).device
assert (
sample_rate == self.cfg.preprocess.mert_sample_rate
), "mert sample rate mismatch, expected {}, got {}".format(
self.cfg.preprocess.mert_sample_rate, sample_rate
)
mert_features = []
# wav: (len)
for wav in wavs:
# {input_values: tensor, attention_mask: tensor}
inputs = self.preprocessor(
wavs, sampling_rate=sample_rate, return_tensors="pt"
).to(device)
outputs = self.model(**inputs, output_hidden_states=True)
# (25 layers, time steps, 1024 feature_dim)
all_layer_hidden_states = torch.stack(outputs.hidden_states).squeeze()
# (1, frame_len, 1024) -> (frame_len, 1024)
feature = outputs.hidden_states[
self.cfg.preprocess.mert_feature_layer
].squeeze(0)
mert_features.append(feature)
return mert_features
def extract_utt_content_features_dataloader(cfg, metadata, num_workers):
dataset_name = metadata[0]["Dataset"]
if cfg.preprocess.extract_whisper_feature:
feat_dir = os.path.join(cfg.preprocess.processed_dir, dataset_name, "whisper")
os.makedirs(feat_dir, exist_ok=True)
feat_files_num = len(os.listdir(feat_dir))
if feat_files_num != len(metadata):
whisper_waveforms = FFmpegDataset(
cfg, dataset_name, cfg.preprocess.whisper_sample_rate, metadata=metadata
)
data_loader = DataLoader(
whisper_waveforms,
num_workers=num_workers,
shuffle=False,
pin_memory=cfg.preprocess.pin_memory,
batch_size=cfg.preprocess.content_feature_batch_size,
collate_fn=collate_batch,
drop_last=False,
)
extractor = WhisperExtractor(cfg)
extractor.load_model()
for batch_idx, items in enumerate(tqdm(data_loader)):
_metadata, wavs, lens = items
batch_content_features = extractor.extract_content_features(
wavs,
lens,
)
for index, utt in enumerate(_metadata):
extractor.save_feature(utt, batch_content_features[index])
if cfg.preprocess.extract_contentvec_feature:
feat_dir = os.path.join(
cfg.preprocess.processed_dir, dataset_name, "contentvec"
)
os.makedirs(feat_dir, exist_ok=True)
feat_files_num = len(os.listdir(feat_dir))
if feat_files_num != len(metadata):
contentvec_waveforms = LibrosaDataset(
cfg,
dataset_name,
cfg.preprocess.contentvec_sample_rate,
metadata=metadata,
)
data_loader = DataLoader(
contentvec_waveforms,
num_workers=num_workers,
shuffle=False,
pin_memory=cfg.preprocess.pin_memory,
batch_size=cfg.preprocess.content_feature_batch_size,
collate_fn=collate_batch,
drop_last=False,
)
extractor = ContentvecExtractor(cfg)
extractor.load_model()
for batch_idx, items in enumerate(tqdm(data_loader)):
_metadata, wavs, lens = items
batch_content_features = extractor.extract_content_features(wavs, lens)
for index, utt in enumerate(_metadata):
extractor.save_feature(utt, batch_content_features[index])
if cfg.preprocess.extract_wenet_feature:
feat_dir = os.path.join(cfg.preprocess.processed_dir, dataset_name, "wenet")
os.makedirs(feat_dir, exist_ok=True)
feat_files_num = len(os.listdir(feat_dir))
if feat_files_num != len(metadata):
wenet_waveforms = TorchaudioDataset(
cfg, dataset_name, cfg.preprocess.wenet_sample_rate, metadata=metadata
)
data_loader = DataLoader(
wenet_waveforms,
num_workers=num_workers,
shuffle=False,
pin_memory=cfg.preprocess.pin_memory,
batch_size=cfg.preprocess.content_feature_batch_size,
collate_fn=collate_batch,
drop_last=False,
)
extractor = WenetExtractor(cfg)
extractor.load_model()
for batch_idx, items in enumerate(tqdm(data_loader)):
_metadata, wavs, lens = items
batch_content_features = extractor.extract_content_features(
wavs,
lens,
)
for index, utt in enumerate(_metadata):
extractor.save_feature(utt, batch_content_features[index])
if cfg.preprocess.extract_mert_feature:
feat_dir = os.path.join(cfg.preprocess.processed_dir, dataset_name, "mert")
os.makedirs(feat_dir, exist_ok=True)
feat_files_num = len(os.listdir(feat_dir))
if feat_files_num != len(metadata):
mert_waveforms = TorchaudioDataset(
cfg, dataset_name, cfg.preprocess.mert_sample_rate, metadata=metadata
)
data_loader = DataLoader(
mert_waveforms,
num_workers=num_workers,
shuffle=False,
pin_memory=cfg.preprocess.pin_memory,
batch_size=cfg.preprocess.content_feature_batch_size,
collate_fn=collate_batch,
drop_last=False,
)
extractor = MertExtractor(cfg)
extractor.load_model()
for batch_idx, items in enumerate(tqdm(data_loader)):
_metadata, wavs, lens = items
batch_content_features = extractor.extract_content_features(
wavs,
lens,
)
for index, utt in enumerate(_metadata):
extractor.save_feature(utt, batch_content_features[index])
|