File size: 6,743 Bytes
0883aa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# Amphion GAN-based Vocoder Recipe

## Supported Model Architectures

GAN-based Vocoder consists of a generator and multiple discriminators, as illustrated below:

<br>
<div align="center">
  <img src="../../../imgs/vocoder/gan/pipeline.png" width="40%">
</div>
<br>

Until now, Amphion GAN-based Vocoder has supported the following generators and discriminators.

- **Generators**
    - [MelGAN](https://arxiv.org/abs/1910.06711)
    - [HiFi-GAN](https://arxiv.org/abs/2010.05646)
    - [NSF-HiFiGAN](https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts)
    - [BigVGAN](https://arxiv.org/abs/2206.04658)
    - [APNet](https://arxiv.org/abs/2305.07952)
- **Discriminators**
    - [Multi-Scale Discriminator](https://arxiv.org/abs/2010.05646) 
    - [Multi-Period Discriminator](https://arxiv.org/abs/2010.05646) 
    - [Multi-Resolution Discriminator](https://arxiv.org/abs/2011.09631)
    - [Multi-Scale Short-Time Fourier Transform Discriminator](https://arxiv.org/abs/2210.13438)
    - [**Multi-Scale Constant-Q Transfrom Discriminator (ours)**](https://arxiv.org/abs/2311.14957)

You can use any vocoder architecture with any dataset you want. There are four steps in total:

1. Data preparation
2. Feature extraction
3. Training
4. Inference

> **NOTE:** You need to run every command of this recipe in the `Amphion` root path:
> ```bash
> cd Amphion
> ```

## 1. Data Preparation

You can train the vocoder with any datasets. Amphion's supported open-source datasets are detailed [here](../../../datasets/README.md).

### Configuration

Specify the dataset path in  `exp_config_base.json`. Note that you can change the `dataset` list to use your preferred datasets.

```json
"dataset": [
    "csd",
    "kising",
    "m4singer",
    "nus48e",
    "opencpop",
    "opensinger",
    "opera",
    "pjs",
    "popbutfy",
    "popcs",
    "ljspeech",
    "vctk",
    "libritts",
],
"dataset_path": {
    // TODO: Fill in your dataset path
    "csd": "[dataset path]",
    "kising": "[dataset path]",
    "m4singer": "[dataset path]",
    "nus48e": "[dataset path]",
    "opencpop": "[dataset path]",
    "opensinger": "[dataset path]",
    "opera": "[dataset path]",
    "pjs": "[dataset path]",
    "popbutfy": "[dataset path]",
    "popcs": "[dataset path]",
    "ljspeech": "[dataset path]",
    "vctk": "[dataset path]",
    "libritts": "[dataset path]",
},
```

### 2. Feature Extraction

The needed features are speficied in the individual vocoder direction so it doesn't require any modification.

### Configuration

Specify the dataset path and the output path for saving the processed data and the training model in `exp_config_base.json`:

```json
    // TODO: Fill in the output log path. The default value is "Amphion/ckpts/vocoder"
    "log_dir": "ckpts/vocoder",
    "preprocess": {
        // TODO: Fill in the output data path. The default value is "Amphion/data"
        "processed_dir": "data",
        ...
    },
```

### Run

Run the `run.sh` as the preproces stage (set  `--stage 1`).

```bash
sh egs/vocoder/gan/{vocoder_name}/run.sh --stage 1
```

> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "1"`.

## 3. Training

### Configuration

We provide the default hyparameters in the `exp_config_base.json`. They can work on single NVIDIA-24g GPU. You can adjust them based on you GPU machines.

```json
"train": {
    "batch_size": 16,
    "max_epoch": 1000000,
    "save_checkpoint_stride": [20],
    "adamw": {
        "lr": 2.0e-4,
        "adam_b1": 0.8,
        "adam_b2": 0.99
    },
    "exponential_lr": {
        "lr_decay": 0.999
    },
}
```

You can also choose any amount of prefered discriminators for training in the `exp_config_base.json`.

```json
"discriminators": [
    "msd",
    "mpd",
    "msstftd",
    "mssbcqtd",
],
```

### Run

Run the `run.sh` as the training stage (set  `--stage 2`). Specify a experimental name to run the following command. The tensorboard logs and checkpoints will be saved in `Amphion/ckpts/vocoder/[YourExptName]`.

```bash
sh egs/vocoder/gan/{vocoder_name}/run.sh --stage 2 --name [YourExptName]
```

> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "0,1,2,3"`.


## 4. Inference

### Run

Run the `run.sh` as the training stage (set  `--stage 3`), we provide three different inference modes, including `infer_from_dataset`, `infer_from_feature`, `and infer_from_audio`. 

```bash
sh egs/vocoder/gan/{vocoder_name}/run.sh --stage 3 \
	--infer_mode [Your chosen inference mode] \
	--infer_datasets [Datasets you want to inference, needed when infer_from_dataset] \
	--infer_feature_dir [Your path to your predicted acoustic features, needed when infer_from_feature] \
	--infer_audio_dir [Your path to your audio files, needed when infer_form_audio] \
	--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
	--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \
```

#### a. Inference from Dataset

Run the `run.sh` with specified datasets, here is an example.

```bash
sh egs/vocoder/gan/{vocoder_name}/run.sh --stage 3 \
	--infer_mode infer_from_dataset \
	--infer_datasets "libritts vctk ljspeech" \
	--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
	--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \
```

#### b. Inference from Features

If you want to inference from your generated acoustic features, you should first prepare your acoustic features into the following structure:

```plaintext
 ┣ {infer_feature_dir}
 ┃ ┣ mels
 ┃ ┃ ┣ sample1.npy
 ┃ ┃ ┣ sample2.npy
 ┃ ┣ f0s (required if you use NSF-HiFiGAN)
 ┃ ┃ ┣ sample1.npy
 ┃ ┃ ┣ sample2.npy
```

Then run the `run.sh` with specificed folder direction, here is an example.

```bash
sh egs/vocoder/gan/{vocoder_name}/run.sh --stage 3 \
	--infer_mode infer_from_feature \
	--infer_feature_dir [Your path to your predicted acoustic features] \
	--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
	--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \
```

#### c. Inference from Audios

If you want to inference from audios for quick analysis synthesis, you should first prepare your audios into the following structure:

```plaintext
 ┣ audios
 ┃ ┣ sample1.wav
 ┃ ┣ sample2.wav
```

Then run the `run.sh` with specificed folder direction, here is an example.

```bash
sh egs/vocoder/gan/{vocoder_name}/run.sh --stage 3 \
	--infer_mode infer_from_audio \
	--infer_audio_dir [Your path to your audio files] \
	--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
	--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \
```