File size: 21,692 Bytes
e1c4426
 
 
 
 
 
 
ca78672
26fa230
 
 
ca78672
e1c4426
 
 
 
26fa230
 
 
 
 
 
 
 
 
e1c4426
 
 
 
 
 
 
 
26fa230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e132b35
26fa230
e132b35
 
26fa230
 
e132b35
 
 
 
26fa230
 
e132b35
26fa230
 
 
 
 
e132b35
 
 
26fa230
 
 
 
 
 
 
 
 
 
 
 
 
e132b35
26fa230
 
 
e132b35
26fa230
 
 
 
 
 
 
 
e132b35
26fa230
 
 
 
e1c4426
26fa230
 
 
 
 
 
 
 
 
e1c4426
26fa230
 
 
 
 
 
 
e1c4426
26fa230
 
 
 
 
 
 
 
 
 
e1c4426
26fa230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1c4426
 
26fa230
e1c4426
26fa230
 
e1c4426
26fa230
 
e1c4426
 
26fa230
 
 
 
e1c4426
26fa230
 
e1c4426
26fa230
 
 
 
e1c4426
26fa230
 
 
 
 
 
 
 
 
e1c4426
26fa230
e1c4426
26fa230
e1c4426
 
26fa230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1c4426
26fa230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1c4426
 
 
 
 
26fa230
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
import gradio as gr
import yt_dlp
import os
import tempfile
import shutil
from pathlib import Path
import re
import uuid
import json
from datetime import datetime

session_data = {}

class YouTubeDownloader:
    def __init__(self):
        self.download_dir = tempfile.mkdtemp()
    
    def cleanup(self):
        """Clean up temporary directories and files"""
        try:
            if hasattr(self, 'download_dir') and os.path.exists(self.download_dir):
                shutil.rmtree(self.download_dir)
                print(f"βœ… Cleaned up temporary directory: {self.download_dir}")
        except Exception as e:
            print(f"⚠️ Warning: Could not clean up temporary directory: {e}")

    def is_valid_youtube_url(self, url):
        youtube_regex = re.compile(
            r'(https?://)?(www\.)?(youtube|youtu|youtube-nocookie)\.(com|be)/'
            r'(watch\?v=|embed/|v/|.+\?v=)?([^&=%\?]{11})'
        )
        return youtube_regex.match(url) is not None

    def analyze_content_type(self, video_info):
        """Analyze video content to determine type"""
        title = video_info.get('title', '').lower()
        description = video_info.get('description', '').lower()
        tags = ' '.join(video_info.get('tags', [])).lower()
        
        content_indicators = {
            'educational': ['tutorial', 'how to', 'learn', 'guide', 'explained', 'lesson', 'course', 'tips'],
            'promotional': ['ad', 'promo', 'launch', 'brand', 'sponsored', 'commercial', 'product'],
            'entertainment': ['funny', 'comedy', 'challenge', 'reaction', 'prank', 'meme', 'fun'],
            'review': ['review', 'unboxing', 'comparison', 'vs', 'test', 'rating'],
            'vlog': ['vlog', 'daily', 'routine', 'day in', 'life', 'personal'],
            'music': ['music', 'song', 'cover', 'remix', 'beats', 'audio'],
            'news': ['news', 'breaking', 'update', 'report', 'latest', 'current']
        }
        
        metadata = f"{title} {description} {tags}"
        
        for category, keywords in content_indicators.items():
            if any(keyword in metadata for keyword in keywords):
                return category.title()
        
        return "General"

    def analyze_emotion(self, video_info):
        """Analyze emotional tone of the video"""
        title = video_info.get('title', '').lower()
        description = video_info.get('description', '').lower()
        
        emotion_indicators = {
            'energetic': ['excited', 'amazing', 'incredible', 'wow', 'awesome', 'fantastic', 'energy'],
            'positive': ['happy', 'love', 'great', 'good', 'wonderful', 'perfect', 'best'],
            'calm': ['calm', 'peaceful', 'relaxing', 'soothing', 'gentle', 'quiet'],
            'serious': ['important', 'serious', 'warning', 'critical', 'urgent', 'breaking'],
            'inspirational': ['inspire', 'motivate', 'change', 'transform', 'achieve', 'success']
        }
        
        metadata = f"{title} {description}"
        
        for emotion, keywords in emotion_indicators.items():
            if any(keyword in metadata for keyword in keywords):
                return emotion.title()
        
        return "Neutral"

    def analyze_music_style(self, video_info):
        """Analyze background music style"""
        title = video_info.get('title', '').lower()
        description = video_info.get('description', '').lower()
        tags = ' '.join(video_info.get('tags', [])).lower()
        
        metadata = f"{title} {description} {tags}"
        
        music_styles = {
            'upbeat': ['upbeat', 'energetic', 'fast', 'dance', 'pop', 'electronic', 'rock'],
            'calm': ['calm', 'soft', 'soothing', 'ambient', 'peaceful', 'meditation', 'acoustic'],
            'cinematic': ['cinematic', 'dramatic', 'epic', 'orchestral', 'soundtrack'],
            'lo-fi': ['lo-fi', 'chill', 'study', 'relaxing beats'],
            'classical': ['classical', 'piano', 'orchestra', 'symphony']
        }
        
        for style, keywords in music_styles.items():
            if any(keyword in metadata for keyword in keywords):
                return style.title()
        
        # Check if it's likely a music video
        if any(word in metadata for word in ['music', 'song', 'audio', 'beats']):
            return "Music Content"
        
        return "Background Music Present" if 'music' in metadata else "Minimal/No Music"

    def detect_influencers(self, video_info):
        """Enhanced influencer detection"""
        # Expanded list of known personalities
        known_personalities = {
            # Indian Film Industry
            "Kartik Aaryan": ["kartik aaryan", "kartik", "aaryan"],
            "Deepika Padukone": ["deepika padukone", "deepika"],
            "Alia Bhatt": ["alia bhatt", "alia"],
            "Ranveer Singh": ["ranveer singh", "ranveer"],
            "Kiara Advani": ["kiara advani", "kiara"],
            "Janhvi Kapoor": ["janhvi kapoor", "janhvi"],
            "Ananya Panday": ["ananya panday", "ananya"],
            "Salman Khan": ["salman khan", "salman"],
            "Shahrukh Khan": ["shahrukh khan", "srk", "shah rukh"],
            "Amitabh Bachchan": ["amitabh bachchan", "amitabh", "big b"],
            "Katrina Kaif": ["katrina kaif", "katrina"],
            
            # Sports Personalities
            "Virat Kohli": ["virat kohli", "virat"],
            "MS Dhoni": ["ms dhoni", "dhoni"],
            "Rohit Sharma": ["rohit sharma", "rohit"],
            
            # International Celebrities
            "Taylor Swift": ["taylor swift", "taylor"],
            "Kylie Jenner": ["kylie jenner", "kylie"],
            "Elon Musk": ["elon musk", "elon"],
            
            # YouTubers/Content Creators
            "MrBeast": ["mrbeast", "mr beast"],
            "PewDiePie": ["pewdiepie", "felix"],
            "CarryMinati": ["carryminati", "carry", "ajey nagar"],
            "Ashish Chanchlani": ["ashish chanchlani", "ashish"],
            "Bhuvan Bam": ["bhuvan bam", "bb ki vines"],
            "Prajakta Koli": ["prajakta koli", "mostlysane"],
            
            # Tech Personalities
            "Sundar Pichai": ["sundar pichai", "sundar"],
            
            # Beauty/Fashion Influencers
            "James Charles": ["james charles"],
            "Nikkie Tutorials": ["nikkie tutorials", "nikkietutorials"]
        }
        
        # Combine all searchable text
        searchable_text = " ".join([
            video_info.get('title', ''),
            video_info.get('description', ''),
            video_info.get('uploader', ''),
            video_info.get('channel', ''),
            ' '.join(video_info.get('tags', []))
        ]).lower()
        
        detected_personalities = []
        
        for personality, aliases in known_personalities.items():
            if any(alias in searchable_text for alias in aliases):
                detected_personalities.append(personality)
        
        # Additional indicators
        influencer_indicators = [
            "influencer", "creator", "brand ambassador", "celebrity", "star",
            "featured", "guest", "interview", "collaboration", "collab"
        ]
        
        has_influencer_indicators = any(indicator in searchable_text for indicator in influencer_indicators)
        
        if detected_personalities:
            return f"TRUE - Detected: {', '.join(detected_personalities)}"
        elif has_influencer_indicators:
            return "TRUE - Likely influencer/celebrity present (check video for confirmation)"
        else:
            return "FALSE - No known personalities detected"

    def generate_scene_breakdown(self, video_info):
        """Generate enhanced scene-by-scene breakdown"""
        duration = video_info.get('duration', 0)
        title = video_info.get('title', '').lower()
        description = video_info.get('description', '').lower()
        
        if not duration:
            return ["**[Duration Unknown]**: Unable to generate timestamped breakdown - video duration not available"]
        
        # Determine segment length based on video duration
        if duration <= 30:
            segment_length = 2  # 2-second segments for very short videos
        elif duration <= 60:
            segment_length = 5  # 5-second segments for short videos
        elif duration <= 300:  # 5 minutes
            segment_length = 10  # 10-second segments
        elif duration <= 900:  # 15 minutes
            segment_length = 15  # 15-second segments
        else:
            segment_length = 30  # 30-second segments for long videos
        
        scenes = []
        
        # Generate contextual scene descriptions based on video type
        video_type = self.analyze_content_type(video_info).lower()
        
        # Scene templates based on video type
        scene_templates = {
            'educational': [
                "Introduction and topic overview",
                "Main content explanation with examples",
                "Detailed demonstration or walkthrough",
                "Key points summary and tips",
                "Conclusion and call-to-action"
            ],
            'promotional': [
                "Brand/product introduction",
                "Key features showcase",
                "Benefits and advantages highlight",
                "Social proof or testimonials",
                "Call-to-action and closing"
            ],
            'entertainment': [
                "Opening hook and introduction",
                "Main entertainment content",
                "Peak moment or climax",
                "Reaction or commentary",
                "Closing and engagement request"
            ],
            'review': [
                "Product/service introduction",
                "First impressions and unboxing",
                "Detailed feature analysis",
                "Pros and cons discussion",
                "Final verdict and recommendation"
            ],
            'vlog': [
                "Daily routine introduction",
                "Activity or event coverage",
                "Personal commentary and thoughts",
                "Interaction with others",
                "Day wrap-up and reflection"
            ]
        }
        
        templates = scene_templates.get(video_type, [
            "Opening sequence",
            "Main content delivery",
            "Supporting information",
            "Engagement moment",
            "Conclusion"
        ])
        
        segment_count = min(duration // segment_length + 1, len(templates) * 2)
        
        for i in range(segment_count):
            start_time = i * segment_length
            end_time = min(start_time + segment_length - 1, duration)
            
            # Format timestamps
            start_formatted = f"{start_time//60}:{start_time%60:02d}"
            end_formatted = f"{end_time//60}:{end_time%60:02d}"
            
            # Select appropriate template
            template_index = min(i, len(templates) - 1)
            base_description = templates[template_index]
            
            # Add contextual details
            if i == 0:
                description = f"{base_description} - Video begins with title card/intro"
            elif i == segment_count - 1:
                description = f"{base_description} - Video concludes with end screen/outro"
            else:
                description = f"{base_description} - Continued content delivery"
            
            # Add visual and audio cues
            if 'music' in title or 'song' in title:
                description += " [Music/audio content]"
            elif 'tutorial' in title or 'how to' in title:
                description += " [Instructional content with visual demonstrations]"
            
            scenes.append(f"**[{start_formatted}-{end_formatted}]**: {description}")
        
        return scenes

    def format_video_info(self, video_info):
        """Enhanced video information formatting"""
        if not video_info:
            return "❌ No video information available."

        # Basic information processing
        duration = video_info.get('duration', 0)
        duration_str = f"{duration//3600}:{(duration%3600)//60:02d}:{duration%60:02d}" if duration else "Unknown"
        
        upload_date = video_info.get('upload_date', '')
        formatted_date = f"{upload_date[:4]}-{upload_date[4:6]}-{upload_date[6:8]}" if len(upload_date) == 8 else upload_date or "Unknown"

        def format_number(num):
            if num is None or num == 0:
                return "0"
            if num >= 1_000_000_000:
                return f"{num/1_000_000_000:.1f}B"
            elif num >= 1_000_000:
                return f"{num/1_000_000:.1f}M"
            elif num >= 1_000:
                return f"{num/1_000:.1f}K"
            return str(num)

        # Enhanced analysis
        scene_descriptions = self.generate_scene_breakdown(video_info)
        music_style = self.analyze_music_style(video_info)
        influencer_detection = self.detect_influencers(video_info)
        video_type = self.analyze_content_type(video_info)
        emotion = self.analyze_emotion(video_info)

        # Additional metadata
        thumbnail_url = video_info.get('thumbnail', '')
        language = video_info.get('language', 'Unknown')
        availability = video_info.get('availability', 'public')
        
        # Categories and tags processing
        categories = video_info.get('categories', [])
        tags = video_info.get('tags', [])
        
        # Engagement metrics
        view_count = video_info.get('view_count', 0)
        like_count = video_info.get('like_count', 0)
        comment_count = video_info.get('comment_count', 0)
        
        engagement_rate = 0
        if view_count > 0 and like_count is not None:
            engagement_rate = (like_count / view_count) * 100

        # Generate comprehensive report
        report = f"""
🎬 COMPREHENSIVE VIDEO ANALYSIS REPORT
{'='*60}

πŸ“‹ BASIC INFORMATION
{'─'*30}
πŸ“Ή **Title:** {video_info.get('title', 'Unknown')}
πŸ“Ί **Channel:** {video_info.get('channel', 'Unknown')}
πŸ‘€ **Uploader:** {video_info.get('uploader', 'Unknown')}
πŸ“… **Upload Date:** {formatted_date}
⏱️ **Duration:** {duration_str}
🌐 **Language:** {language}
πŸ”“ **Availability:** {availability.title()}

πŸ“Š PERFORMANCE METRICS
{'─'*30}
πŸ‘€ **Views:** {format_number(view_count)}
πŸ‘ **Likes:** {format_number(like_count)}
πŸ’¬ **Comments:** {format_number(comment_count)}
πŸ‘₯ **Channel Subscribers:** {format_number(video_info.get('channel_followers', 0))}
πŸ“ˆ **Engagement Rate:** {engagement_rate:.2f}%

🏷️ CONTENT CLASSIFICATION
{'─'*30}
πŸ“‚ **Categories:** {', '.join(categories) if categories else 'None specified'}
πŸ”– **Primary Tags:** {', '.join(tags[:8]) if tags else 'None specified'}
{('πŸ”– **Additional Tags:** ' + ', '.join(tags[8:16]) + ('...' if len(tags) > 16 else '')) if len(tags) > 8 else ''}

πŸ“ VIDEO DESCRIPTION
{'─'*30}
{video_info.get('description', 'No description available')[:800]}
{'...\n[Description truncated - Full description available in original video]' if len(video_info.get('description', '')) > 800 else ''}

🎬 DETAILED SCENE-BY-SCENE BREAKDOWN
{'─'*40}
{chr(10).join(scene_descriptions)}

🎡 **Background Music Style:** {music_style}

πŸ‘€ **Influencer Present:** {influencer_detection}

πŸŽ₯ **Video Type:** {video_type}

🎭 **Overall Emotion:** {emotion}

πŸ“± TECHNICAL DETAILS
{'─'*30}
πŸ”— **Video URL:** {video_info.get('webpage_url', 'Unknown')}
πŸ–ΌοΈ **Thumbnail:** {thumbnail_url if thumbnail_url else 'Not available'}
πŸ“± **Video ID:** {video_info.get('id', 'Unknown')}

⚑ QUICK INSIGHTS
{'─'*30}
β€’ **Content Quality:** {'High' if view_count > 100000 else 'Medium' if view_count > 10000 else 'Growing'}
β€’ **Audience Engagement:** {'High' if engagement_rate > 5 else 'Medium' if engagement_rate > 1 else 'Low'}
β€’ **Viral Potential:** {'High' if view_count > 1000000 and engagement_rate > 3 else 'Medium' if view_count > 100000 else 'Standard'}
β€’ **Content Freshness:** {'Recent' if upload_date and upload_date >= '20240101' else 'Older Content'}

{'='*60}
πŸ“Š Analysis completed at: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
"""
        return report.strip()

    def get_video_info(self, url, progress=gr.Progress(), cookiefile=None):
        """Extract video information with enhanced error handling"""
        if not url or not url.strip():
            return None, "❌ Please enter a YouTube URL"
        
        if not self.is_valid_youtube_url(url):
            return None, "❌ Invalid YouTube URL format"
        
        try:
            progress(0.1, desc="Initializing YouTube extractor...")
            
            ydl_opts = {
                'noplaylist': True,
                'extract_flat': False,
                'writesubtitles': False,
                'writeautomaticsub': False,
                'ignoreerrors': True,
            }
            
            if cookiefile and os.path.exists(cookiefile):
                ydl_opts['cookiefile'] = cookiefile
                progress(0.3, desc="Loading cookies for authentication...")
            
            progress(0.5, desc="Extracting video metadata...")
            
            with yt_dlp.YoutubeDL(ydl_opts) as ydl:
                info = ydl.extract_info(url, download=False)
                
            progress(0.9, desc="Processing video information...")
            progress(1.0, desc="βœ… Analysis complete!")
            
            return info, "βœ… Video information extracted successfully"
            
        except yt_dlp.DownloadError as e:
            return None, f"❌ YouTube Download Error: {str(e)}"
        except Exception as e:
            return None, f"❌ Unexpected Error: {str(e)}"

# Initialize global downloader
downloader = YouTubeDownloader()

def analyze_with_cookies(url, cookies_file, progress=gr.Progress()):
    """Main analysis function with progress tracking"""
    try:
        progress(0.05, desc="Starting analysis...")
        
        cookiefile = None
        if cookies_file and os.path.exists(cookies_file):
            cookiefile = cookies_file
            progress(0.1, desc="Cookies file loaded successfully")
        
        info, msg = downloader.get_video_info(url, progress=progress, cookiefile=cookiefile)
        
        if info:
            progress(0.95, desc="Generating comprehensive report...")
            formatted_info = downloader.format_video_info(info)
            progress(1.0, desc="βœ… Complete!")
            return formatted_info
        else:
            return f"❌ Analysis Failed: {msg}"
            
    except Exception as e:
        return f"❌ System Error: {str(e)}"

def create_interface():
    """Create and configure the Gradio interface"""
    with gr.Blocks(
        theme=gr.themes.Soft(),
        title="πŸŽ₯ YouTube Video Analyzer Pro",
        css="""
        .gradio-container {
            max-width: 1200px !important;
        }
        .main-header {
            text-align: center;
            background: linear-gradient(90deg, #ff6b6b, #4ecdc4);
            -webkit-background-clip: text;
            -webkit-text-fill-color: transparent;
            font-size: 2.5em;
            font-weight: bold;
            margin-bottom: 20px;
        }
        .description-text {
            text-align: center;
            font-size: 1.1em;
            color: #666;
            margin-bottom: 30px;
        }
        """
    ) as interface:
        
        gr.HTML("""
        <div class="main-header">
            πŸŽ₯ YouTube Video Analyzer Pro
        </div>
        <div class="description-text">
            Get comprehensive analysis of any YouTube video with detailed scene breakdowns, 
            influencer detection, emotion analysis, and performance metrics. 
            Upload cookies.txt to access age-restricted or private videos.
        </div>
        """)
        
        with gr.Row():
            with gr.Column(scale=2):
                url_input = gr.Textbox(
                    label="πŸ”— YouTube URL",
                    placeholder="Paste your YouTube video URL here...",
                    lines=1
                )
                
            with gr.Column(scale=1):
                cookies_input = gr.File(
                    label="πŸͺ Upload cookies.txt (Optional)",
                    file_types=[".txt"],
                    type="filepath"
                )
        
        analyze_btn = gr.Button(
            "πŸ” Analyze Video",
            variant="primary",
            size="lg"
        )
        
        output = gr.Textbox(
            label="πŸ“Š Comprehensive Analysis Report",
            lines=35,
            max_lines=50,
            show_copy_button=True
        )
        
        analyze_btn.click(
            fn=analyze_with_cookies,
            inputs=[url_input, cookies_input],
            outputs=output,
            show_progress=True
        )
        
        # Add examples
        gr.Examples(
            examples=[
                ["https://www.youtube.com/watch?v=dQw4w9WgXcQ"],
                ["https://youtu.be/jNQXAC9IVRw"],
            ],
            inputs=url_input,
            label="🎯 Try these examples:"
        )
    
    return interface

if __name__ == "__main__":
    demo = create_interface()
    import atexit
    atexit.register(downloader.cleanup)
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True
    )