File size: 6,870 Bytes
bade21f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f477c93
 
 
 
 
 
 
 
 
 
 
bade21f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import gradio as gr
import spaces
import torch
import math
import numpy as np
import os
from PIL import Image
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer, AutoConfig

# =============================================================================
# InternVL‑3 preprocessing utilities (image‑only version)
# =============================================================================
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)


def build_transform(input_size: int = 448):
    """Return torchvision transform matching InternVL pre‑training."""
    return T.Compose(
        [
            T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img),
            T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
            T.ToTensor(),
            T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD),
        ]
    )


def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float("inf")
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        tgt_ar = ratio[0] / ratio[1]
        diff = abs(aspect_ratio - tgt_ar)
        if diff < best_ratio_diff or (diff == best_ratio_diff and area > 0.5 * image_size * image_size * ratio[0] * ratio[1]):
            best_ratio_diff = diff
            best_ratio = ratio
    return best_ratio


def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    """Split arbitrarily‑sized image into ≤12 tiles sized 448×448 (InternVL spec)."""
    ow, oh = image.size
    aspect_ratio = ow / oh
    target_ratios = sorted(
        {(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if min_num <= i * j <= max_num},
        key=lambda x: x[0] * x[1],
    )
    ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, ow, oh, image_size)
    tw, th = image_size * ratio[0], image_size * ratio[1]
    blocks = ratio[0] * ratio[1]
    resized = image.resize((tw, th))
    tiles = [
        resized.crop(
            (
                (idx % (tw // image_size)) * image_size,
                (idx // (tw // image_size)) * image_size,
                ((idx % (tw // image_size)) + 1) * image_size,
                ((idx // (tw // image_size)) + 1) * image_size,
            )
        )
        for idx in range(blocks)
    ]
    if use_thumbnail and blocks != 1:
        tiles.append(image.resize((image_size, image_size)))
    return tiles


def load_image(path: str, input_size: int = 448, max_num: int = 12):
    """Return tensor of shape (N, 3, H, W) ready for InternVL."""
    img = Image.open(path).convert("RGB")
    transform = build_transform(input_size)
    tiles = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
    return torch.stack([transform(t) for t in tiles])


# =============================================================================
# InternVL‑3‑14B model loading (multi‑GPU aware)
# =============================================================================
MODEL_ID = "OpenGVLab/InternVL3-14B"


def split_model(model_name: str):
    """Distribute LLM layers across GPUs, keeping vision encoder on GPU 0."""
    n_gpu = torch.cuda.device_count()
    if n_gpu < 2:
        return "auto"  # let transformers decide

    cfg = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
    n_layers = cfg.llm_config.num_hidden_layers  # type: ignore[attr-defined]

    # GPU0 does vision + some text layers => treat as 0.5 GPU
    per_gpu = math.ceil(n_layers / (n_gpu - 0.5))
    alloc = [per_gpu] * n_gpu
    alloc[0] = math.ceil(alloc[0] * 0.5)

    dmap = {
        "vision_model": 0,
        "mlp1": 0,
        "language_model.model.tok_embeddings": 0,
        "language_model.model.embed_tokens": 0,
        "language_model.output": 0,
        "language_model.model.norm": 0,
        "language_model.model.rotary_emb": 0,
        "language_model.lm_head": 0,
    }
    layer_idx = 0
    for gpu, n in enumerate(alloc):
        for _ in range(n):
            if layer_idx >= n_layers:
                break
            dmap[f"language_model.model.layers.{layer_idx}"] = 0 if layer_idx == n_layers - 1 else gpu
            layer_idx += 1
    return dmap


device_map = split_model(MODEL_ID)

model = AutoModel.from_pretrained(
    MODEL_ID,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True,
    device_map=device_map,
).eval()

tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True, use_fast=False)


# =============================================================================
# Inference function (image‑only)
# =============================================================================
@spaces.GPU
def internvl_inference(image_path: str | None, text_input: str | None = None):
    if image_path is None:
        return "Please upload an image first."
    pixel_values = load_image(image_path, max_num=12).to(torch.bfloat16).cuda()
    prompt = f"<image>\n{text_input}" if text_input else "<image>\n"
    gen_cfg = dict(max_new_tokens=1024, do_sample=True)
    return model.chat(tokenizer, pixel_values, prompt, gen_cfg)


# =============================================================================
# Gradio UI (image‑only, Gradio 5 compatible)
# =============================================================================
DESCRIPTION = (
    "[InternVL 3‑14B demo](https://huggingface.co/OpenGVLab/InternVL3-14B) — "
    "upload an image and ask anything about it."
)

css = """
#output_text {
  height: 500px;
  overflow: auto;
  border: 1px solid #ccc;
}
"""

with gr.Blocks(css=css, theme="origin") as demo:
    gr.Markdown(DESCRIPTION)

    with gr.Row():
        # Left column: image, question, submit button (stacked vertically)
        with gr.Column(scale=1):
            input_image = gr.Image(label="Upload Image", type="filepath")
            text_input = gr.Textbox(label="Question")
            submit_btn = gr.Button("Submit")
        # Right column: model output
        with gr.Column(scale=1):
            output_text = gr.Textbox(label="Model Output", elem_id="output_text")
    
    # 🔽 예제 추가
    gr.Examples(
        examples=[["example.webp", "explain this image"]],
        inputs=[input_image, text_input],
        outputs=output_text,
        fn=internvl_inference,     # 클릭 시 바로 실행하려면 지정
        cache_examples=True,       # 결과 캐시(선택)
        label="Try an example"     # 표기명(선택)
    )
    
    submit_btn.click(internvl_inference, [input_image, text_input], [output_text])

if __name__ == "__main__":
    demo.launch()