File size: 6,323 Bytes
e85fecb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
"""

D-FINE: Redefine Regression Task of DETRs as Fine-grained Distribution Refinement

Copyright (c) 2024 The D-FINE Authors. All Rights Reserved.

---------------------------------------------------------------------------------

Modified from RT-DETR (https://github.com/lyuwenyu/RT-DETR)

Copyright (c) 2023 lyuwenyu. All Rights Reserved.

"""

import math
from typing import List

import torch
import torch.nn as nn
import torch.nn.functional as F


def inverse_sigmoid(x: torch.Tensor, eps: float = 1e-5) -> torch.Tensor:
    x = x.clip(min=0.0, max=1.0)
    return torch.log(x.clip(min=eps) / (1 - x).clip(min=eps))


def bias_init_with_prob(prior_prob=0.01):
    """initialize conv/fc bias value according to a given probability value."""
    bias_init = float(-math.log((1 - prior_prob) / prior_prob))
    return bias_init


def deformable_attention_core_func(

    value, value_spatial_shapes, sampling_locations, attention_weights

):
    """

    Args:

        value (Tensor): [bs, value_length, n_head, c]

        value_spatial_shapes (Tensor|List): [n_levels, 2]

        value_level_start_index (Tensor|List): [n_levels]

        sampling_locations (Tensor): [bs, query_length, n_head, n_levels, n_points, 2]

        attention_weights (Tensor): [bs, query_length, n_head, n_levels, n_points]



    Returns:

        output (Tensor): [bs, Length_{query}, C]

    """
    bs, _, n_head, c = value.shape
    _, Len_q, _, n_levels, n_points, _ = sampling_locations.shape

    split_shape = [h * w for h, w in value_spatial_shapes]
    value_list = value.split(split_shape, dim=1)
    sampling_grids = 2 * sampling_locations - 1
    sampling_value_list = []
    for level, (h, w) in enumerate(value_spatial_shapes):
        # N_, H_*W_, M_, D_ -> N_, H_*W_, M_*D_ -> N_, M_*D_, H_*W_ -> N_*M_, D_, H_, W_
        value_l_ = value_list[level].flatten(2).permute(0, 2, 1).reshape(bs * n_head, c, h, w)
        # N_, Lq_, M_, P_, 2 -> N_, M_, Lq_, P_, 2 -> N_*M_, Lq_, P_, 2
        sampling_grid_l_ = sampling_grids[:, :, :, level].permute(0, 2, 1, 3, 4).flatten(0, 1)
        # N_*M_, D_, Lq_, P_
        sampling_value_l_ = F.grid_sample(
            value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
        )
        sampling_value_list.append(sampling_value_l_)
    # (N_, Lq_, M_, L_, P_) -> (N_, M_, Lq_, L_, P_) -> (N_*M_, 1, Lq_, L_*P_)
    attention_weights = attention_weights.permute(0, 2, 1, 3, 4).reshape(
        bs * n_head, 1, Len_q, n_levels * n_points
    )
    output = (
        (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
        .sum(-1)
        .reshape(bs, n_head * c, Len_q)
    )

    return output.permute(0, 2, 1)


def deformable_attention_core_func_v2(

    value: torch.Tensor,

    value_spatial_shapes,

    sampling_locations: torch.Tensor,

    attention_weights: torch.Tensor,

    num_points_list: List[int],

    method="default",

):
    """

    Args:

        value (Tensor): [bs, value_length, n_head, c]

        value_spatial_shapes (Tensor|List): [n_levels, 2]

        value_level_start_index (Tensor|List): [n_levels]

        sampling_locations (Tensor): [bs, query_length, n_head, n_levels * n_points, 2]

        attention_weights (Tensor): [bs, query_length, n_head, n_levels * n_points]



    Returns:

        output (Tensor): [bs, Length_{query}, C]

    """
    bs, n_head, c, _ = value[0].shape
    _, Len_q, _, _, _ = sampling_locations.shape

    # sampling_offsets [8, 480, 8, 12, 2]
    if method == "default":
        sampling_grids = 2 * sampling_locations - 1

    elif method == "discrete":
        sampling_grids = sampling_locations

    sampling_grids = sampling_grids.permute(0, 2, 1, 3, 4).flatten(0, 1)
    sampling_locations_list = sampling_grids.split(num_points_list, dim=-2)

    sampling_value_list = []
    for level, (h, w) in enumerate(value_spatial_shapes):
        value_l = value[level].reshape(bs * n_head, c, h, w)
        sampling_grid_l: torch.Tensor = sampling_locations_list[level]

        if method == "default":
            sampling_value_l = F.grid_sample(
                value_l, sampling_grid_l, mode="bilinear", padding_mode="zeros", align_corners=False
            )

        elif method == "discrete":
            # n * m, seq, n, 2
            sampling_coord = (
                sampling_grid_l * torch.tensor([[w, h]], device=value_l.device) + 0.5
            ).to(torch.int64)

            # FIX ME? for rectangle input
            sampling_coord = sampling_coord.clamp(0, h - 1)
            sampling_coord = sampling_coord.reshape(bs * n_head, Len_q * num_points_list[level], 2)

            s_idx = (
                torch.arange(sampling_coord.shape[0], device=value_l.device)
                .unsqueeze(-1)
                .repeat(1, sampling_coord.shape[1])
            )
            sampling_value_l: torch.Tensor = value_l[
                s_idx, :, sampling_coord[..., 1], sampling_coord[..., 0]
            ]  # n l c

            sampling_value_l = sampling_value_l.permute(0, 2, 1).reshape(
                bs * n_head, c, Len_q, num_points_list[level]
            )

        sampling_value_list.append(sampling_value_l)

    attn_weights = attention_weights.permute(0, 2, 1, 3).reshape(
        bs * n_head, 1, Len_q, sum(num_points_list)
    )
    weighted_sample_locs = torch.concat(sampling_value_list, dim=-1) * attn_weights
    output = weighted_sample_locs.sum(-1).reshape(bs, n_head * c, Len_q)

    return output.permute(0, 2, 1)


def get_activation(act: str, inpace: bool = True):
    """get activation"""
    if act is None:
        return nn.Identity()

    elif isinstance(act, nn.Module):
        return act

    act = act.lower()

    if act == "silu" or act == "swish":
        m = nn.SiLU()

    elif act == "relu":
        m = nn.ReLU()

    elif act == "leaky_relu":
        m = nn.LeakyReLU()

    elif act == "silu":
        m = nn.SiLU()

    elif act == "gelu":
        m = nn.GELU()

    elif act == "hardsigmoid":
        m = nn.Hardsigmoid()

    else:
        raise RuntimeError("")

    if hasattr(m, "inplace"):
        m.inplace = inpace

    return m