Spaces:
Sleeping
Sleeping
File size: 9,804 Bytes
65d4bb3 ef1decc 65d4bb3 ef1decc 65d4bb3 ef1decc 65d4bb3 ef1decc 65d4bb3 ef1decc 65d4bb3 ef1decc 65d4bb3 ef1decc 65d4bb3 ef1decc 65d4bb3 ef1decc 65d4bb3 ef1decc 65d4bb3 ef1decc 65d4bb3 ef1decc 65d4bb3 ef1decc 65d4bb3 e506eac 65d4bb3 ef1decc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import os
import tempfile
import networkx as nx
import sympy as sp
import re
from collections import defaultdict
import gradio as gr
from gradio.themes import Ocean
from huggingface_hub import InferenceClient
import requests
from PIL import Image
from io import BytesIO
# --- Set your HF token ---
# Either hardcode here or use Colab's userdata like:
HF_TOKEN = os.environ.get("HF_TOKEN")
if not HF_TOKEN:
raise RuntimeError("HF_TOKEN environment variable not set. Please add it in your Space's secrets.")
from huggingface_hub import InferenceClient
client = InferenceClient(
provider="featherless-ai",
api_key=os.environ["HF_TOKEN"],
)
# --- Helper: Save PIL image to URL-accessible temp file ---
def image_to_temp_url(image):
temp_path = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
image.save(temp_path.name)
return "https://your-server.com/temporary-image-support.png" # placeholder (host image externally if needed)
# --- OR upload image to Hugging Face Space / GDrive and return a public URL instead
# You can use this for production use
def extract_network_from_image(image):
# Upload image to temp path
image_path = tempfile.NamedTemporaryFile(suffix=".png", delete=False).name
image.save(image_path)
# Upload manually or serve image online if needed
# For now, simulate by loading image into bytes and re-uploading to HF or GDrive
# Instead: In Colab, just use direct GDrive URLs
# Placeholder: Manually put a URL here for now (from GDrive or HF Spaces or web)
raise NotImplementedError("Replace this with your public image URL logic.")
# New: Directly send the URL to Unsloth Mistral + get output
def extract_network_from_url(image_url):
prompt = (
"Analyze this network diagram and list the network only, e.g. Q + W -> R. Do not print any other sentence except the network."
"The arrows represent reactions. If there are multiple reactions, give them comma separated like A -> B, B -> C, etc."
)
completion = client.chat.completions.create(
model="unsloth/Mistral-Small-3.2-24B-Instruct-2506",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image_url", "image_url": {"url": image_url}},
]
}
]
)
return completion.choices[0].message.content.strip()
# --- Network Analysis Functions ---
def parse_species(expr):
return [s.strip() for s in re.split(r'\s*[\+\-]\s*', expr)]
def parse_network(input_string):
edges, reversible_edges = [], []
for part in input_string.split(','):
part = part.strip()
if '<->' in part:
lhs, rhs = part.split('<->')
lhs_species = parse_species(lhs)
rhs_species = parse_species(rhs)
reversible_edges.append((lhs_species, rhs_species))
elif '->' in part:
lhs, rhs = part.split('->')
lhs_species = parse_species(lhs)
rhs_species = parse_species(rhs)
edges.append((lhs_species, rhs_species))
return edges, reversible_edges
def build_graph(edges, reversible_edges):
G = nx.DiGraph()
for a, b in edges:
lhs = " + ".join(a)
rhs = " + ".join(b)
G.add_edge(lhs, rhs)
for a, b in reversible_edges:
lhs = " + ".join(a)
rhs = " + ".join(b)
G.add_edge(lhs, rhs)
G.add_edge(rhs, lhs)
return G
def analyze_graph(G):
return {
"nodes": list(G.nodes),
"edges": list(G.edges),
"num_nodes": G.number_of_nodes(),
"num_edges": G.number_of_edges(),
"is_cyclic": not nx.is_directed_acyclic_graph(G)
}
def mass_action_odes(edges, reversible_edges):
species = set()
odes = defaultdict(lambda: 0)
rate_counter = 1
def term(species_list):
term_expr = 1
for s in species_list:
sym = sp.symbols(s)
species.add(sym)
term_expr *= sym
return term_expr
for lhs_species, rhs_species in edges:
k = sp.symbols(f'k{rate_counter}')
rate_counter += 1
flux = k * term(lhs_species)
for s in lhs_species:
sym = sp.symbols(s)
odes[sym] -= flux
for s in rhs_species:
sym = sp.symbols(s)
odes[sym] += flux
for lhs_species, rhs_species in reversible_edges:
kf = sp.symbols(f'k{rate_counter}')
rate_counter += 1
kr = sp.symbols(f'k{rate_counter}')
rate_counter += 1
forward_flux = kf * term(lhs_species)
reverse_flux = kr * term(rhs_species)
for s in lhs_species:
sym = sp.symbols(s)
odes[sym] -= forward_flux
odes[sym] += reverse_flux
for s in rhs_species:
sym = sp.symbols(s)
odes[sym] += forward_flux
odes[sym] -= reverse_flux
return dict(odes)
def format_odes(odes):
return "\n".join([f"d{var}/dt = {sp.simplify(expr)}" for var, expr in odes.items()])
def compute_jacobian(odes):
variables = list(odes.keys())
F = sp.Matrix([odes[var] for var in variables])
J = F.jacobian(variables)
return sp.pretty(J)
def process_network(input_string, query, image_url=None):
edges, reversible_edges = parse_network(input_string)
G = build_graph(edges, reversible_edges)
info = analyze_graph(G)
if 'ode' in query.lower():
ode_sys = mass_action_odes(edges, reversible_edges)
return format_odes(ode_sys)
elif 'jacobian' in query.lower():
ode_sys = mass_action_odes(edges, reversible_edges)
return f"Jacobian Matrix:\n{compute_jacobian(ode_sys)}"
elif 'variables' in query.lower():
return f"There are {info['num_nodes']} variables: {info['nodes']}"
elif 'edges' in query.lower():
return f"Edges: {info['edges']}"
elif 'cyclic' in query.lower() or 'cycle' in query.lower():
cycles = list(nx.simple_cycles(G))
return "Cycles found:\n" + "\n".join([" -> ".join(cycle + [cycle[0]]) for cycle in cycles]) if cycles else "No cycles found."
# Fallback: Use LLM on both image and parsed network
else:
content = [
{
"type": "text",
"text": (
"You are given a biological network with the following structure:\n"
f"β’ Nodes: {info['nodes']}\n"
f"β’ Reactions (edges): {info['edges']}\n\n"
f"Answer the following query based on this structure and the image:"
f"\n\n{query}"
),
}
]
if image_url:
content.append({
"type": "image_url",
"image_url": {"url": image_url}
})
response = client.chat.completions.create(
model="unsloth/Mistral-Small-3.2-24B-Instruct-2506",
messages=[{"role": "user", "content": content}],
)
return response.choices[0].message.content.strip()
# --- Full Gradio Handler ---
def full_process(text_input, image_url, query):
image_preview = None
network_description = ""
result = ""
if text_input.strip():
network_description = text_input.strip()
elif image_url.strip():
# Display image from URL
try:
response = requests.get(image_url)
image_preview = Image.open(BytesIO(response.content))
except:
return None, "", "β Invalid image URL"
# Extract network
network_description = extract_network_from_url(image_url)
else:
return None, "", "β Provide text or image URL."
# Answer query
result = process_network(network_description, query, image_url=image_url if image_url.strip() else None)
return image_preview, network_description, result
import gradio as gr
from gradio.themes.utils import sizes
from gradio.themes.base import Base
from gradio.themes.utils import colors
# Optional: Keep your theme
theme = gr.themes.Ocean()
with gr.Blocks(theme=theme, css="#footer-link {text-align: center; font-size: 14px; color: #555;}") as iface:
gr.Markdown("## π¬ Biological Network Analyzer")
gr.Markdown("Paste a network OR provide a public image URL. Then ask a query like **'Give ODEs'** or **'Is it cyclic?'**")
with gr.Row():
with gr.Column():
# img_input = gr.Image(type="pil", label="Upload Network Image (β Not supported unless image is hosted online)")
text_input = gr.Textbox(label="Text Input (optional)", placeholder="Or paste network: A + B -> C, X <-> Y")
url_input = gr.Textbox(label="π Public Image URL (e.g., from GDrive)", placeholder="https://... (must be accessible)")
query_input = gr.Textbox(label="Query", placeholder="Ask about ODEs, Jacobian, edges, etc.")
with gr.Column():
img_output = gr.Image(label="πΌοΈ Image Preview")
network_text = gr.Textbox(label="π§ͺ Extracted Network")
result_box = gr.Textbox(label="π Answer")
# Link logic to function
inputs = [text_input, url_input, query_input]
outputs = [img_output, network_text, result_box]
iface_fn = gr.Interface(fn=full_process, inputs=inputs, outputs=outputs)
# Footer GitHub link
gr.Markdown("""
<footer style='text-align:center; margin-top:20px; color:#aaa;'>
Built using Gradio, Hugging Face & Mistral |
<a href="https://github.com/kumardevansh/network_analyzer" target="_blank" style="color:#aaa; text-decoration:underline;">
View on GitHub
</a>
</footer>
""")
iface.launch(share=True)
|