Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	File size: 35,046 Bytes
			
			| 8dd961f | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 | """
Modern ML Architecture for POLYMEROS
Implements transformer-based models, multi-task learning, and ensemble methods
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import numpy as np
import pandas as pd
from typing import Dict, List, Tuple, Optional, Union, Any
from dataclasses import dataclass
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.metrics import accuracy_score, mean_squared_error
import xgboost as xgb
from scipy import stats
import warnings
import json
from pathlib import Path
@dataclass
class ModelPrediction:
    """Structured prediction output with uncertainty quantification"""
    prediction: Union[int, float, np.ndarray]
    confidence: float
    uncertainty_epistemic: float  # Model uncertainty
    uncertainty_aleatoric: float  # Data uncertainty
    class_probabilities: Optional[np.ndarray] = None
    feature_importance: Optional[Dict[str, float]] = None
    explanation: Optional[str] = None
@dataclass
class MultiTaskTarget:
    """Multi-task learning targets"""
    classification_target: Optional[int] = None  # Polymer type classification
    degradation_level: Optional[float] = None  # Continuous degradation score
    property_predictions: Optional[Dict[str, float]] = None  # Material properties
    aging_rate: Optional[float] = None  # Rate of aging prediction
class SpectralTransformerBlock(nn.Module):
    """Transformer block optimized for spectral data"""
    def __init__(self, d_model: int, num_heads: int, d_ff: int, dropout: float = 0.1):
        super().__init__()
        self.d_model = d_model
        self.num_heads = num_heads
        # Multi-head attention
        self.attention = nn.MultiheadAttention(
            d_model, num_heads, dropout=dropout, batch_first=True
        )
        # Feed-forward network
        self.ff_network = nn.Sequential(
            nn.Linear(d_model, d_ff),
            nn.ReLU(),
            nn.Dropout(dropout),
            nn.Linear(d_ff, d_model),
        )
        # Layer normalization
        self.ln1 = nn.LayerNorm(d_model)
        self.ln2 = nn.LayerNorm(d_model)
        # Dropout
        self.dropout = nn.Dropout(dropout)
    def forward(
        self, x: torch.Tensor, mask: Optional[torch.Tensor] = None
    ) -> torch.Tensor:
        # Self-attention with residual connection
        attn_output, attention_weights = self.attention(x, x, x, attn_mask=mask)
        x = self.ln1(x + self.dropout(attn_output))
        # Feed-forward with residual connection
        ff_output = self.ff_network(x)
        x = self.ln2(x + self.dropout(ff_output))
        return x
class SpectralPositionalEncoding(nn.Module):
    """Positional encoding adapted for spectral wavenumber information"""
    def __init__(self, d_model: int, max_seq_length: int = 2000):
        super().__init__()
        self.d_model = d_model
        # Create positional encoding matrix
        pe = torch.zeros(max_seq_length, d_model)
        position = torch.arange(0, max_seq_length, dtype=torch.float).unsqueeze(1)
        # Use different frequencies for different dimensions
        div_term = torch.exp(
            torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model)
        )
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        self.register_buffer("pe", pe.unsqueeze(0))
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        seq_len = x.size(1)
        return x + self.pe[:, :seq_len, :].to(x.device)
class SpectralTransformer(nn.Module):
    """Transformer architecture optimized for spectral analysis"""
    def __init__(
        self,
        input_dim: int = 1,
        d_model: int = 256,
        num_heads: int = 8,
        num_layers: int = 6,
        d_ff: int = 1024,
        max_seq_length: int = 2000,
        num_classes: int = 2,
        dropout: float = 0.1,
    ):
        super().__init__()
        self.d_model = d_model
        self.num_classes = num_classes
        # Input projection
        self.input_projection = nn.Linear(input_dim, d_model)
        # Positional encoding
        self.pos_encoding = SpectralPositionalEncoding(d_model, max_seq_length)
        # Transformer layers
        self.transformer_layers = nn.ModuleList(
            [
                SpectralTransformerBlock(d_model, num_heads, d_ff, dropout)
                for _ in range(num_layers)
            ]
        )
        # Classification head
        self.classification_head = nn.Sequential(
            nn.Linear(d_model, d_model // 2),
            nn.ReLU(),
            nn.Dropout(dropout),
            nn.Linear(d_model // 2, num_classes),
        )
        # Regression heads for multi-task learning
        self.degradation_head = nn.Sequential(
            nn.Linear(d_model, d_model // 2),
            nn.ReLU(),
            nn.Dropout(dropout),
            nn.Linear(d_model // 2, 1),
        )
        self.property_head = nn.Sequential(
            nn.Linear(d_model, d_model // 2),
            nn.ReLU(),
            nn.Dropout(dropout),
            nn.Linear(d_model // 2, 5),  # Predict 5 material properties
        )
        # Uncertainty estimation layers
        self.uncertainty_head = nn.Sequential(
            nn.Linear(d_model, d_model // 4),
            nn.ReLU(),
            nn.Linear(d_model // 4, 2),  # Epistemic and aleatoric uncertainty
        )
        # Attention pooling for sequence aggregation
        self.attention_pool = nn.MultiheadAttention(d_model, 1, batch_first=True)
        self.pool_query = nn.Parameter(torch.randn(1, 1, d_model))
        self.dropout = nn.Dropout(dropout)
    def forward(
        self, x: torch.Tensor, return_attention: bool = False
    ) -> Dict[str, torch.Tensor]:
        batch_size, seq_len, input_dim = x.shape
        # Input projection and positional encoding
        x = self.input_projection(x)  # (batch, seq_len, d_model)
        x = self.pos_encoding(x)
        x = self.dropout(x)
        # Store attention weights if requested
        attention_weights = []
        # Pass through transformer layers
        for layer in self.transformer_layers:
            x = layer(x)
        # Attention pooling to get sequence representation
        query = self.pool_query.expand(batch_size, -1, -1)
        pooled_output, pool_attention = self.attention_pool(query, x, x)
        pooled_output = pooled_output.squeeze(1)  # (batch, d_model)
        if return_attention:
            attention_weights.append(pool_attention)
        # Multi-task outputs
        outputs = {}
        # Classification output
        classification_logits = self.classification_head(pooled_output)
        outputs["classification_logits"] = classification_logits
        outputs["classification_probs"] = F.softmax(classification_logits, dim=-1)
        # Degradation prediction
        degradation_pred = self.degradation_head(pooled_output)
        outputs["degradation_prediction"] = degradation_pred
        # Property predictions
        property_pred = self.property_head(pooled_output)
        outputs["property_predictions"] = property_pred
        # Uncertainty estimation
        uncertainty_pred = self.uncertainty_head(pooled_output)
        outputs["uncertainty_epistemic"] = torch.nn.Softplus()(uncertainty_pred[:, 0])
        outputs["uncertainty_aleatoric"] = F.softplus(uncertainty_pred[:, 1])
        if return_attention:
            outputs["attention_weights"] = attention_weights
        return outputs
class BayesianUncertaintyEstimator:
    """Bayesian uncertainty quantification using Monte Carlo dropout"""
    def __init__(self, model: nn.Module, num_samples: int = 100):
        self.model = model
        self.num_samples = num_samples
    def enable_dropout(self, model: nn.Module):
        """Enable dropout for uncertainty estimation"""
        for module in model.modules():
            if isinstance(module, nn.Dropout):
                module.train()
    def predict_with_uncertainty(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
        """
        Predict with uncertainty quantification using Monte Carlo dropout
        Args:
            x: Input tensor
        Returns:
            Predictions with uncertainty estimates
        """
        self.model.eval()
        self.enable_dropout(self.model)
        predictions = []
        classification_probs = []
        degradation_preds = []
        uncertainty_estimates = []
        with torch.no_grad():
            for _ in range(self.num_samples):
                output = self.model(x)
                predictions.append(output["classification_probs"])
                classification_probs.append(output["classification_probs"])
                degradation_preds.append(output["degradation_prediction"])
                uncertainty_estimates.append(
                    torch.stack(
                        [
                            output["uncertainty_epistemic"],
                            output["uncertainty_aleatoric"],
                        ],
                        dim=1,
                    )
                )
        # Stack predictions
        classification_stack = torch.stack(
            classification_probs, dim=0
        )  # (num_samples, batch, classes)
        degradation_stack = torch.stack(degradation_preds, dim=0)
        uncertainty_stack = torch.stack(uncertainty_estimates, dim=0)
        # Calculate statistics
        mean_classification = classification_stack.mean(dim=0)
        std_classification = classification_stack.std(dim=0)
        mean_degradation = degradation_stack.mean(dim=0)
        std_degradation = degradation_stack.std(dim=0)
        mean_uncertainty = uncertainty_stack.mean(dim=0)
        # Calculate epistemic uncertainty (model uncertainty)
        epistemic_uncertainty = std_classification.mean(dim=1)
        # Calculate aleatoric uncertainty (data uncertainty)
        aleatoric_uncertainty = mean_uncertainty[:, 1]
        return {
            "mean_classification": mean_classification,
            "std_classification": std_classification,
            "mean_degradation": mean_degradation,
            "std_degradation": std_degradation,
            "epistemic_uncertainty": epistemic_uncertainty,
            "aleatoric_uncertainty": aleatoric_uncertainty,
            "total_uncertainty": epistemic_uncertainty + aleatoric_uncertainty,
        }
class EnsembleModel:
    """Ensemble model combining multiple approaches"""
    def __init__(self):
        self.models = {}
        self.weights = {}
        self.is_fitted = False
    def add_transformer_model(self, model: SpectralTransformer, weight: float = 1.0):
        """Add transformer model to ensemble"""
        self.models["transformer"] = model
        self.weights["transformer"] = weight
    def add_random_forest(self, n_estimators: int = 100, weight: float = 1.0):
        """Add Random Forest to ensemble"""
        self.models["random_forest_clf"] = RandomForestClassifier(
            n_estimators=n_estimators, random_state=42, oob_score=True
        )
        self.models["random_forest_reg"] = RandomForestRegressor(
            n_estimators=n_estimators, random_state=42, oob_score=True
        )
        self.weights["random_forest"] = weight
    def add_xgboost(self, weight: float = 1.0):
        """Add XGBoost to ensemble"""
        self.models["xgboost_clf"] = xgb.XGBClassifier(
            n_estimators=100, random_state=42, eval_metric="logloss"
        )
        self.models["xgboost_reg"] = xgb.XGBRegressor(n_estimators=100, random_state=42)
        self.weights["xgboost"] = weight
    def fit(
        self,
        X: np.ndarray,
        y_classification: np.ndarray,
        y_degradation: Optional[np.ndarray] = None,
    ):
        """
        Fit ensemble models
        Args:
            X: Input features (flattened spectra for traditional ML models)
            y_classification: Classification targets
            y_degradation: Degradation targets (optional)
        """
        # Fit Random Forest
        if "random_forest_clf" in self.models:
            self.models["random_forest_clf"].fit(X, y_classification)
            if y_degradation is not None:
                self.models["random_forest_reg"].fit(X, y_degradation)
        # Fit XGBoost
        if "xgboost_clf" in self.models:
            self.models["xgboost_clf"].fit(X, y_classification)
            if y_degradation is not None:
                self.models["xgboost_reg"].fit(X, y_degradation)
        self.is_fitted = True
    def predict(
        self, X: np.ndarray, X_transformer: Optional[torch.Tensor] = None
    ) -> ModelPrediction:
        """
        Ensemble prediction with uncertainty quantification
        Args:
            X: Input features for traditional ML models
            X_transformer: Input tensor for transformer model
        Returns:
            Ensemble prediction with uncertainty
        """
        if not self.is_fitted and "transformer" not in self.models:
            raise ValueError(
                "Ensemble must be fitted or contain pre-trained transformer"
            )
        predictions = {}
        classification_probs = []
        degradation_preds = []
        model_weights = []
        # Random Forest predictions
        if (
            "random_forest_clf" in self.models
            and self.models["random_forest_clf"] is not None
        ):
            rf_probs = self.models["random_forest_clf"].predict_proba(X)
            classification_probs.append(rf_probs)
            model_weights.append(self.weights["random_forest"])
            if "random_forest_reg" in self.models:
                rf_degradation = self.models["random_forest_reg"].predict(X)
                degradation_preds.append(rf_degradation)
        # XGBoost predictions
        if "xgboost_clf" in self.models and self.models["xgboost_clf"] is not None:
            xgb_probs = self.models["xgboost_clf"].predict_proba(X)
            classification_probs.append(xgb_probs)
            model_weights.append(self.weights["xgboost"])
            if "xgboost_reg" in self.models:
                xgb_degradation = self.models["xgboost_reg"].predict(X)
                degradation_preds.append(xgb_degradation)
        # Transformer predictions
        if "transformer" in self.models and X_transformer is not None:
            transformer_output = self.models["transformer"](X_transformer)
            transformer_probs = (
                transformer_output["classification_probs"].detach().numpy()
            )
            classification_probs.append(transformer_probs)
            model_weights.append(self.weights["transformer"])
            transformer_degradation = (
                transformer_output["degradation_prediction"].detach().numpy()
            )
            degradation_preds.append(transformer_degradation.flatten())
        # Weighted ensemble
        if classification_probs:
            model_weights = np.array(model_weights)
            model_weights = model_weights / np.sum(model_weights)  # Normalize
            # Weighted average of probabilities
            ensemble_probs = np.zeros_like(classification_probs[0])
            for i, probs in enumerate(classification_probs):
                ensemble_probs += model_weights[i] * probs
            # Predicted class
            predicted_class = np.argmax(ensemble_probs, axis=1)[0]
            confidence = np.max(ensemble_probs, axis=1)[0]
            # Calculate uncertainty from model disagreement
            prob_variance = np.var([probs[0] for probs in classification_probs], axis=0)
            epistemic_uncertainty = np.mean(prob_variance)
            # Aleatoric uncertainty (average across models)
            aleatoric_uncertainty = 1.0 - confidence  # Simple estimate
            # Degradation prediction
            ensemble_degradation = None
            if degradation_preds:
                ensemble_degradation = np.average(
                    degradation_preds, weights=model_weights, axis=0
                )[0]
        else:
            raise ValueError("No valid predictions could be made")
        # Feature importance (from Random Forest if available)
        feature_importance = None
        if (
            "random_forest_clf" in self.models
            and self.models["random_forest_clf"] is not None
        ):
            importance = self.models["random_forest_clf"].feature_importances_
            # Convert to wavenumber-based importance (assuming spectral input)
            feature_importance = {
                f"wavenumber_{i}": float(importance[i]) for i in range(len(importance))
            }
        return ModelPrediction(
            prediction=predicted_class,
            confidence=confidence,
            uncertainty_epistemic=epistemic_uncertainty,
            uncertainty_aleatoric=aleatoric_uncertainty,
            class_probabilities=ensemble_probs[0],
            feature_importance=feature_importance,
            explanation=self._generate_explanation(
                predicted_class, confidence, ensemble_degradation
            ),
        )
    def _generate_explanation(
        self,
        predicted_class: int,
        confidence: float,
        degradation: Optional[float] = None,
    ) -> str:
        """Generate human-readable explanation"""
        class_names = {0: "Stable (Unweathered)", 1: "Weathered"}
        class_name = class_names.get(predicted_class, f"Class {predicted_class}")
        explanation = f"Predicted class: {class_name} (confidence: {confidence:.3f})"
        if degradation is not None:
            explanation += f"\nEstimated degradation level: {degradation:.3f}"
        if confidence > 0.8:
            explanation += "\nHigh confidence prediction - strong spectral evidence"
        elif confidence > 0.6:
            explanation += "\nModerate confidence - some uncertainty in classification"
        else:
            explanation += "\nLow confidence - significant uncertainty, consider additional analysis"
        return explanation
class MultiTaskLearningFramework:
    """Framework for multi-task learning in polymer analysis"""
    def __init__(self, model: SpectralTransformer):
        self.model = model
        self.task_weights = {
            "classification": 1.0,
            "degradation": 0.5,
            "properties": 0.3,
        }
        self.optimizer = None
        self.scheduler = None
    def setup_training(self, learning_rate: float = 1e-4):
        """Setup optimizer and scheduler"""
        self.optimizer = torch.optim.AdamW(
            self.model.parameters(), lr=learning_rate, weight_decay=0.01
        )
        self.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
            self.optimizer, T_max=100
        )
    def compute_loss(
        self,
        outputs: Dict[str, torch.Tensor],
        targets: MultiTaskTarget,
        batch_size: int,
    ) -> Dict[str, torch.Tensor]:
        """
        Compute multi-task loss
        Args:
            outputs: Model outputs
            targets: Multi-task targets
            batch_size: Batch size
        Returns:
            Loss components
        """
        losses = {}
        total_loss = 0
        # Classification loss
        if targets.classification_target is not None:
            classification_loss = F.cross_entropy(
                outputs["classification_logits"],
                torch.tensor(
                    [targets.classification_target] * batch_size, dtype=torch.long
                ),
            )
            losses["classification"] = classification_loss
            total_loss += self.task_weights["classification"] * classification_loss
        # Degradation regression loss
        if targets.degradation_level is not None:
            degradation_loss = F.mse_loss(
                outputs["degradation_prediction"].squeeze(),
                torch.tensor(
                    [targets.degradation_level] * batch_size, dtype=torch.float
                ),
            )
            losses["degradation"] = degradation_loss
            total_loss += self.task_weights["degradation"] * degradation_loss
        # Property prediction loss
        if targets.property_predictions is not None:
            property_targets = torch.tensor(
                [[targets.property_predictions.get(f"prop_{i}", 0.0) for i in range(5)]]
                * batch_size,
                dtype=torch.float,
            )
            property_loss = F.mse_loss(
                outputs["property_predictions"], property_targets
            )
            losses["properties"] = property_loss
            total_loss += self.task_weights["properties"] * property_loss
        # Uncertainty regularization
        uncertainty_reg = torch.mean(outputs["uncertainty_epistemic"]) + torch.mean(
            outputs["uncertainty_aleatoric"]
        )
        losses["uncertainty_reg"] = uncertainty_reg
        total_loss += 0.01 * uncertainty_reg  # Small weight for regularization
        losses["total"] = total_loss
        return losses
    def train_step(self, x: torch.Tensor, targets: MultiTaskTarget) -> Dict[str, float]:
        """Single training step"""
        self.model.train()
        if self.optimizer is None:
            raise ValueError(
                "Optimizer is not initialized. Call setup_training() to initialize it."
            )
        self.optimizer.zero_grad()
        outputs = self.model(x)
        losses = self.compute_loss(outputs, targets, x.size(0))
        losses["total"].backward()
        torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
        if self.optimizer is None:
            raise ValueError(
                "Optimizer is not initialized. Call setup_training() to initialize it."
            )
        self.optimizer.step()
        return {
            k: float(v.item()) if torch.is_tensor(v) else float(v)
            for k, v in losses.items()
        }
class ModernMLPipeline:
    """Complete modern ML pipeline for polymer analysis"""
    def __init__(self, config: Optional[Dict] = None):
        self.config = config or self._default_config()
        self.transformer_model = None
        self.ensemble_model = None
        self.uncertainty_estimator = None
        self.multi_task_framework = None
    def _default_config(self) -> Dict:
        """Default configuration"""
        return {
            "transformer": {
                "d_model": 256,
                "num_heads": 8,
                "num_layers": 6,
                "d_ff": 1024,
                "dropout": 0.1,
                "num_classes": 2,
            },
            "ensemble": {
                "transformer_weight": 0.4,
                "random_forest_weight": 0.3,
                "xgboost_weight": 0.3,
            },
            "uncertainty": {"num_mc_samples": 50},
            "training": {"learning_rate": 1e-4, "batch_size": 32, "num_epochs": 100},
        }
    def initialize_models(self, input_dim: int = 1, max_seq_length: int = 2000):
        """Initialize all models"""
        # Transformer model
        self.transformer_model = SpectralTransformer(
            input_dim=input_dim,
            d_model=self.config["transformer"]["d_model"],
            num_heads=self.config["transformer"]["num_heads"],
            num_layers=self.config["transformer"]["num_layers"],
            d_ff=self.config["transformer"]["d_ff"],
            max_seq_length=max_seq_length,
            num_classes=self.config["transformer"]["num_classes"],
            dropout=self.config["transformer"]["dropout"],
        )
        # Uncertainty estimator
        self.uncertainty_estimator = BayesianUncertaintyEstimator(
            self.transformer_model,
            num_samples=self.config["uncertainty"]["num_mc_samples"],
        )
        # Multi-task framework
        self.multi_task_framework = MultiTaskLearningFramework(self.transformer_model)
        # Ensemble model
        self.ensemble_model = EnsembleModel()
        self.ensemble_model.add_transformer_model(
            self.transformer_model, self.config["ensemble"]["transformer_weight"]
        )
        self.ensemble_model.add_random_forest(
            weight=self.config["ensemble"]["random_forest_weight"]
        )
        self.ensemble_model.add_xgboost(
            weight=self.config["ensemble"]["xgboost_weight"]
        )
    def train_ensemble(
        self,
        X_flat: np.ndarray,
        X_transformer: torch.Tensor,
        y_classification: np.ndarray,
        y_degradation: Optional[np.ndarray] = None,
    ):
        """Train the ensemble model"""
        if self.ensemble_model is None:
            raise ValueError("Models not initialized. Call initialize_models() first.")
        # Train traditional ML models
        self.ensemble_model.fit(X_flat, y_classification, y_degradation)
        # Setup transformer training
        if self.multi_task_framework is None:
            raise ValueError(
                "Multi-task framework is not initialized. Call initialize_models() first."
            )
        self.multi_task_framework.setup_training(
            self.config["training"]["learning_rate"]
        )
        print(
            "Ensemble training completed (transformer training would require full training loop)"
        )
    def predict_with_all_methods(
        self, X_flat: np.ndarray, X_transformer: torch.Tensor
    ) -> Dict[str, Any]:
        """
        Comprehensive prediction using all methods
        Args:
            X_flat: Flattened spectral data for traditional ML
            X_transformer: Tensor format for transformer
        Returns:
            Complete prediction results
        """
        results = {}
        # Ensemble prediction
        if self.ensemble_model is None:
            raise ValueError(
                "Ensemble model is not initialized. Call initialize_models() first."
            )
        ensemble_pred = self.ensemble_model.predict(X_flat, X_transformer)
        results["ensemble"] = ensemble_pred
        # Transformer with uncertainty
        if self.transformer_model is not None:
            if self.uncertainty_estimator is None:
                raise ValueError(
                    "Uncertainty estimator is not initialized. Call initialize_models() first."
                )
            uncertainty_pred = self.uncertainty_estimator.predict_with_uncertainty(
                X_transformer
            )
            results["transformer_uncertainty"] = uncertainty_pred
        # Individual model predictions for comparison
        individual_predictions = {}
        if (
            self.ensemble_model is not None
            and "random_forest_clf" in self.ensemble_model.models
        ):
            rf_pred = self.ensemble_model.models["random_forest_clf"].predict_proba(
                X_flat
            )[0]
            individual_predictions["random_forest"] = rf_pred
        if "xgboost_clf" in self.ensemble_model.models:
            xgb_pred = self.ensemble_model.models["xgboost_clf"].predict_proba(X_flat)[
                0
            ]
            individual_predictions["xgboost"] = xgb_pred
        results["individual_models"] = individual_predictions
        return results
    def get_model_insights(
        self, X_flat: np.ndarray, X_transformer: torch.Tensor
    ) -> Dict[str, Any]:
        """
        Generate insights about model behavior and predictions
        Args:
            X_flat: Flattened spectral data
            X_transformer: Transformer input format
        Returns:
            Model insights and explanations
        """
        insights = {}
        # Feature importance from Random Forest
        if "random_forest_clf" in self.ensemble_model.models:
            if (
                self.ensemble_model
                and "random_forest_clf" in self.ensemble_model.models
                and self.ensemble_model.models["random_forest_clf"] is not None
            ):
                rf_importance = self.ensemble_model.models[
                    "random_forest_clf"
                ].feature_importances_
            else:
                rf_importance = None
            if rf_importance is not None:
                top_features = np.argsort(rf_importance)[-10:][::-1]
            else:
                top_features = []
            insights["top_spectral_regions"] = {
                f"wavenumber_{idx}": float(rf_importance[idx])
                for idx in top_features
                if rf_importance is not None
            }
        # Attention weights from transformer
        if self.transformer_model is not None:
            self.transformer_model.eval()
            with torch.no_grad():
                outputs = self.transformer_model(X_transformer, return_attention=True)
                if "attention_weights" in outputs:
                    insights["attention_patterns"] = outputs["attention_weights"]
        # Uncertainty analysis
        predictions = self.predict_with_all_methods(X_flat, X_transformer)
        if "transformer_uncertainty" in predictions:
            uncertainty_data = predictions["transformer_uncertainty"]
            insights["uncertainty_analysis"] = {
                "epistemic_uncertainty": float(
                    uncertainty_data["epistemic_uncertainty"].mean()
                ),
                "aleatoric_uncertainty": float(
                    uncertainty_data["aleatoric_uncertainty"].mean()
                ),
                "total_uncertainty": float(
                    uncertainty_data["total_uncertainty"].mean()
                ),
                "confidence_level": (
                    "high"
                    if uncertainty_data["total_uncertainty"].mean() < 0.1
                    else (
                        "medium"
                        if uncertainty_data["total_uncertainty"].mean() < 0.3
                        else "low"
                    )
                ),
            }
        # Model agreement analysis
        if "individual_models" in predictions:
            individual = predictions["individual_models"]
            agreements = []
            for model1_name, model1_pred in individual.items():
                for model2_name, model2_pred in individual.items():
                    if model1_name != model2_name:
                        # Calculate agreement based on prediction similarity
                        agreement = 1.0 - np.abs(model1_pred - model2_pred).mean()
                        agreements.append(agreement)
            insights["model_agreement"] = {
                "average_agreement": float(np.mean(agreements)) if agreements else 0.0,
                "agreement_level": (
                    "high"
                    if np.mean(agreements) > 0.8
                    else "medium" if np.mean(agreements) > 0.6 else "low"
                ),
            }
        return insights
    def save_models(self, save_path: Path):
        """Save trained models"""
        save_path = Path(save_path)
        save_path.mkdir(parents=True, exist_ok=True)
        # Save transformer model
        if self.transformer_model is not None:
            torch.save(
                self.transformer_model.state_dict(), save_path / "transformer_model.pth"
            )
        # Save configuration
        with open(save_path / "config.json", "w") as f:
            json.dump(self.config, f, indent=2)
        print(f"Models saved to {save_path}")
    def load_models(self, load_path: Path):
        """Load pre-trained models"""
        load_path = Path(load_path)
        # Load configuration
        with open(load_path / "config.json", "r") as f:
            self.config = json.load(f)
        # Initialize and load transformer
        self.initialize_models()
        if (
            self.transformer_model is not None
            and (load_path / "transformer_model.pth").exists()
        ):
            self.transformer_model.load_state_dict(
                torch.load(load_path / "transformer_model.pth", map_location="cpu")
            )
        else:
            raise ValueError(
                "Transformer model is not initialized or model file is missing."
            )
        print(f"Models loaded from {load_path}")
# Utility functions for data preparation
def prepare_transformer_input(
    spectral_data: np.ndarray, max_length: int = 2000
) -> torch.Tensor:
    """
    Prepare spectral data for transformer input
    Args:
        spectral_data: Raw spectral intensities (1D array)
        max_length: Maximum sequence length
    Returns:
        Formatted tensor for transformer
    """
    # Ensure proper length
    if len(spectral_data) > max_length:
        # Downsample
        indices = np.linspace(0, len(spectral_data) - 1, max_length, dtype=int)
        spectral_data = spectral_data[indices]
    elif len(spectral_data) < max_length:
        # Pad with zeros
        padding = np.zeros(max_length - len(spectral_data))
        spectral_data = np.concatenate([spectral_data, padding])
    # Reshape for transformer: (batch_size, sequence_length, features)
    return torch.tensor(spectral_data, dtype=torch.float32).unsqueeze(0).unsqueeze(-1)
def create_multitask_targets(
    classification_label: int,
    degradation_score: Optional[float] = None,
    material_properties: Optional[Dict[str, float]] = None,
) -> MultiTaskTarget:
    """
    Create multi-task learning targets
    Args:
        classification_label: Classification target (0 or 1)
        degradation_score: Continuous degradation score [0, 1]
        material_properties: Dictionary of material properties
    Returns:
        MultiTaskTarget object
    """
    return MultiTaskTarget(
        classification_target=classification_label,
        degradation_level=degradation_score,
        property_predictions=material_properties,
    )
 | 
