Spaces:
Sleeping
Sleeping
File size: 15,078 Bytes
6373c5a e484a46 6373c5a 6ea9614 e484a46 6373c5a 6ea9614 e484a46 6373c5a 6ea9614 6373c5a 6ea9614 e484a46 6373c5a e484a46 6ea9614 6373c5a 6ea9614 6373c5a ba24c6a e484a46 6373c5a 6ea9614 e484a46 6373c5a 6ea9614 e484a46 6373c5a e484a46 6ea9614 6373c5a 6ea9614 6373c5a 6ea9614 6373c5a 6ea9614 6373c5a 6ea9614 6373c5a 6ea9614 6373c5a e484a46 6ea9614 6373c5a 6ea9614 6373c5a 6ea9614 6373c5a 6ea9614 6373c5a 6ea9614 6373c5a 6ea9614 6373c5a 6ea9614 6373c5a 6ea9614 e484a46 6373c5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
# scripts/run_inference.py
"""
CLI inference with preprocessing parity.
Applies: resample → baseline (deg=2) → smooth (w=11,o=2) → normalize
unless explicitly disabled via flags.
Usage (examples):
python scripts/run_inference.py \
--input datasets/rdwp/sta-1.txt \
--arch figure2 \
--weights outputs/figure2_model.pth \
--target-len 500
# Disable smoothing only:
python scripts/run_inference.py --input ... --arch resnet --weights ... --disable-smooth
"""
import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
import argparse
import json
import csv
import logging
from pathlib import Path
from typing import cast, Dict, List, Any
from torch import nn
import time
import numpy as np
import torch
import torch.nn.functional as F
from models.registry import build, choices, build_multiple, validate_model_list
from utils.preprocessing import preprocess_spectrum, TARGET_LENGTH
from utils.multifile import parse_spectrum_data, detect_file_format
from scripts.plot_spectrum import load_spectrum
from scripts.discover_raman_files import label_file
def parse_args():
p = argparse.ArgumentParser(
description="Raman/FTIR spectrum inference with multi-model support."
)
p.add_argument(
"--input",
required=True,
help="Path to spectrum file (.txt, .csv, .json) or directory for batch processing.",
)
# Model selection - either single or multiple
group = p.add_mutually_exclusive_group(required=True)
group.add_argument(
"--arch", choices=choices(), help="Single model architecture key."
)
group.add_argument(
"--models",
help="Comma-separated list of models for comparison (e.g., 'figure2,resnet,resnet18vision').",
)
p.add_argument(
"--weights",
help="Path to model weights (.pth). For multi-model, use pattern with {model} placeholder.",
)
p.add_argument(
"--target-len",
type=int,
default=TARGET_LENGTH,
help="Resample length (default: 500).",
)
# Modality support
p.add_argument(
"--modality",
choices=["raman", "ftir"],
default="raman",
help="Spectroscopy modality for preprocessing (default: raman).",
)
# Default = ON; use disable- flags to turn steps off explicitly.
p.add_argument(
"--disable-baseline", action="store_true", help="Disable baseline correction."
)
p.add_argument(
"--disable-smooth",
action="store_true",
help="Disable Savitzky–Golay smoothing.",
)
p.add_argument(
"--disable-normalize",
action="store_true",
help="Disable min-max normalization.",
)
p.add_argument(
"--output",
default=None,
help="Output path - JSON for single file, CSV for multi-model comparison.",
)
p.add_argument(
"--output-format",
choices=["json", "csv"],
default="json",
help="Output format for results.",
)
p.add_argument(
"--device",
default="cpu",
choices=["cpu", "cuda"],
help="Compute device (default: cpu).",
)
# File format options
p.add_argument(
"--file-format",
choices=["auto", "txt", "csv", "json"],
default="auto",
help="Input file format (auto-detect by default).",
)
return p.parse_args()
# /////////////////////////////////////////////////////////
def _load_state_dict_safe(path: str):
"""Load a state dict safely across torch versions & checkpoint formats."""
try:
obj = torch.load(path, map_location="cpu", weights_only=True) # newer torch
except TypeError:
obj = torch.load(path, map_location="cpu") # fallback for older torch
# Accept either a plain state_dict or a checkpoint dict that contains one
if isinstance(obj, dict):
for k in ("state_dict", "model_state_dict", "model"):
if k in obj and isinstance(obj[k], dict):
obj = obj[k]
break
if not isinstance(obj, dict):
raise ValueError(
"Loaded object is not a state_dict or checkpoint with a state_dict. "
f"Type={type(obj)} from file={path}"
)
# Strip DataParallel 'module.' prefixes if present
if any(key.startswith("module.") for key in obj.keys()):
obj = {key.replace("module.", "", 1): val for key, val in obj.items()}
return obj
# /////////////////////////////////////////////////////////
def run_single_model_inference(
x_raw: np.ndarray,
y_raw: np.ndarray,
model_name: str,
weights_path: str,
args: argparse.Namespace,
device: torch.device,
) -> Dict[str, Any]:
"""Run inference with a single model."""
start_time = time.time()
# Preprocess spectrum
_, y_proc = preprocess_spectrum(
x_raw,
y_raw,
target_len=args.target_len,
modality=args.modality,
do_baseline=not args.disable_baseline,
do_smooth=not args.disable_smooth,
do_normalize=not args.disable_normalize,
out_dtype="float32",
)
# Build model & load weights
model = cast(nn.Module, build(model_name, args.target_len)).to(device)
state = _load_state_dict_safe(weights_path)
missing, unexpected = model.load_state_dict(state, strict=False)
if missing or unexpected:
logging.info(
f"Model {model_name}: Loaded with non-strict keys. missing={len(missing)} unexpected={len(unexpected)}"
)
model.eval()
# Run inference
x_tensor = torch.from_numpy(y_proc[None, None, :]).to(device)
with torch.no_grad():
logits = model(x_tensor).float().cpu()
probs = F.softmax(logits, dim=1)
processing_time = time.time() - start_time
probs_np = probs.numpy().ravel().tolist()
logits_np = logits.numpy().ravel().tolist()
pred_label = int(np.argmax(probs_np))
# Map prediction to class name
class_names = ["Stable", "Weathered"]
predicted_class = (
class_names[pred_label]
if pred_label < len(class_names)
else f"Class_{pred_label}"
)
return {
"model": model_name,
"prediction": pred_label,
"predicted_class": predicted_class,
"confidence": max(probs_np),
"probs": probs_np,
"logits": logits_np,
"processing_time": processing_time,
}
# /////////////////////////////////////////////////////////
def run_multi_model_inference(
x_raw: np.ndarray,
y_raw: np.ndarray,
model_names: List[str],
args: argparse.Namespace,
device: torch.device,
) -> Dict[str, Dict[str, Any]]:
"""Run inference with multiple models for comparison."""
results = {}
for model_name in model_names:
try:
# Generate weights path - either use pattern or assume same weights for all
if args.weights and "{model}" in args.weights:
weights_path = args.weights.format(model=model_name)
elif args.weights:
weights_path = args.weights
else:
# Default weights path pattern
weights_path = f"outputs/{model_name}_model.pth"
if not Path(weights_path).exists():
logging.warning(f"Weights not found for {model_name}: {weights_path}")
continue
result = run_single_model_inference(
x_raw, y_raw, model_name, weights_path, args, device
)
results[model_name] = result
except Exception as e:
logging.error(f"Failed to run inference with {model_name}: {str(e)}")
continue
return results
# /////////////////////////////////////////////////////////
def save_results(
results: Dict[str, Any], output_path: Path, format: str = "json"
) -> None:
"""Save results to file in specified format"""
output_path.parent.mkdir(parents=True, exist_ok=True)
if format == "json":
with open(output_path, "w", encoding="utf-8") as f:
json.dump(results, f, indent=2)
elif format == "csv":
# Convert to tabular format for CSV
if "models" in results: # Multi-model results
rows = []
for model_name, model_result in results["models"].items():
row = {
"model": model_name,
"prediction": model_result["prediction"],
"predicted_class": model_result["predicted_class"],
"confidence": model_result["confidence"],
"processing_time": model_result["processing_time"],
}
# Add individual class probabilities
if "probs" in model_result:
for i, prob in enumerate(model_result["probs"]):
row[f"prob_class_{i}"] = prob
rows.append(row)
# Write CSV
with open(output_path, "w", newline="", encoding="utf-8") as f:
if rows:
writer = csv.DictWriter(f, fieldnames=rows[0].keys())
writer.writeheader()
writer.writerows(rows)
else: # Single model result
with open(output_path, "w", newline="", encoding="utf-8") as f:
writer = csv.DictWriter(f, fieldnames=results.keys())
writer.writeheader()
writer.writerow(results)
def main():
logging.basicConfig(level=logging.INFO, format="INFO: %(message)s")
args = parse_args()
# Input validation
in_path = Path(args.input)
if not in_path.exists():
raise FileNotFoundError(f"Input file not found: {in_path}")
# Determine if this is single or multi-model inference
if args.models:
model_names = [m.strip() for m in args.models.split(",")]
model_names = validate_model_list(model_names)
if not model_names:
raise ValueError(f"No valid models found in: {args.models}")
multi_model = True
else:
model_names = [args.arch]
multi_model = False
# Load and parse spectrum data
if args.file_format == "auto":
file_format = None # Auto-detect
else:
file_format = args.file_format
try:
# Read file content
with open(in_path, "r", encoding="utf-8") as f:
content = f.read()
# Parse spectrum data with format detection
x_raw, y_raw = parse_spectrum_data(content, str(in_path))
x_raw = np.array(x_raw, dtype=np.float32)
y_raw = np.array(y_raw, dtype=np.float32)
except Exception as e:
x_raw, y_raw = load_spectrum(str(in_path))
x_raw = np.array(x_raw, dtype=np.float32)
y_raw = np.array(y_raw, dtype=np.float32)
logging.warning(
f"Failed to parse with new parser, falling back to original: {e}"
)
x_raw, y_raw = load_spectrum(str(in_path))
if len(x_raw) < 10:
raise ValueError("Input spectrum has too few points (<10).")
# Setup device
device = torch.device(
args.device if (args.device == "cuda" and torch.cuda.is_available()) else "cpu"
)
# Run inference
model_results = {} # Initialize to avoid unbound variable error
if multi_model:
model_results = run_multi_model_inference(
np.array(x_raw, dtype=np.float32),
np.array(y_raw, dtype=np.float32),
model_names,
args,
device,
)
# Get ground truth if available
true_label = label_file(str(in_path))
# Prepare combined results
results = {
"input_file": str(in_path),
"modality": args.modality,
"models": model_results,
"true_label": true_label,
"preprocessing": {
"baseline": not args.disable_baseline,
"smooth": not args.disable_smooth,
"normalize": not args.disable_normalize,
"target_len": args.target_len,
},
"comparison": {
"total_models": len(model_results),
"agreements": (
sum(
1
for i, (_, r1) in enumerate(model_results.items())
for j, (_, r2) in enumerate(
list(model_results.items())[i + 1 :]
)
if r1["prediction"] == r2["prediction"]
)
if len(model_results) > 1
else 0
),
},
}
# Default output path for multi-model
default_output = (
Path("outputs")
/ "inference"
/ f"{in_path.stem}_comparison.{args.output_format}"
)
else:
# Single model inference
model_result = run_single_model_inference(
x_raw, y_raw, model_names[0], args.weights, args, device
)
true_label = label_file(str(in_path))
results = {
"input_file": str(in_path),
"modality": args.modality,
"arch": model_names[0],
"weights": str(args.weights),
"target_len": args.target_len,
"preprocessing": {
"baseline": not args.disable_baseline,
"smooth": not args.disable_smooth,
"normalize": not args.disable_normalize,
},
"predicted_label": model_result["prediction"],
"predicted_class": model_result["predicted_class"],
"true_label": true_label,
"confidence": model_result["confidence"],
"probs": model_result["probs"],
"logits": model_result["logits"],
"processing_time": model_result["processing_time"],
}
# Default output path for single model
default_output = (
Path("outputs")
/ "inference"
/ f"{in_path.stem}_{model_names[0]}.{args.output_format}"
)
# Save results
output_path = Path(args.output) if args.output else default_output
save_results(results, output_path, args.output_format)
# Log summary
if multi_model:
logging.info(
f"Multi-model inference completed with {len(model_results)} models"
)
for model_name, result in model_results.items():
logging.info(
f"{model_name}: {result['predicted_class']} (confidence: {result['confidence']:.3f})"
)
logging.info(f"Results saved to {output_path}")
else:
logging.info(
f"Predicted Label: {results['predicted_label']} ({results['predicted_class']})"
)
logging.info(f"Confidence: {results['confidence']:.3f}")
logging.info(f"True Label: {results['true_label']}")
logging.info(f"Result saved to {output_path}")
if __name__ == "__main__":
main()
|