Spaces:
Sleeping
Sleeping
File size: 11,706 Bytes
6e2806f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
"""
Tests for the training manager functionality.
"""
import pytest
import tempfile
import shutil
from pathlib import Path
import numpy as np
import torch
import json
import pandas as pd
from utils.training_manager import (
TrainingManager,
TrainingConfig,
TrainingStatus,
get_training_manager,
CVStrategy,
get_cv_splitter,
calculate_spectroscopy_metrics,
augment_spectral_data,
spectral_cosine_similarity,
)
def create_test_dataset(dataset_path: Path, num_samples: int = 10):
"""Create a test dataset for training"""
# Create directories
(dataset_path / "stable").mkdir(parents=True, exist_ok=True)
(dataset_path / "weathered").mkdir(parents=True, exist_ok=True)
# Generate synthetic spectra
wavenumbers = np.linspace(400, 4000, 200)
for i in range(num_samples // 2):
# Stable samples
intensities = np.random.normal(0.5, 0.1, len(wavenumbers))
data = np.column_stack([wavenumbers, intensities])
np.savetxt(dataset_path / "stable" / f"stable_{i}.txt", data)
# Weathered samples
intensities = np.random.normal(0.3, 0.1, len(wavenumbers))
data = np.column_stack([wavenumbers, intensities])
np.savetxt(dataset_path / "weathered" / f"weathered_{i}.txt", data)
@pytest.fixture
def temp_dataset():
"""Create temporary dataset for testing"""
temp_dir = Path(tempfile.mkdtemp())
dataset_path = temp_dir / "test_dataset"
create_test_dataset(dataset_path)
yield dataset_path
shutil.rmtree(temp_dir)
@pytest.fixture
def training_manager():
"""Create training manager for testing"""
temp_dir = Path(tempfile.mkdtemp())
# Use ThreadPoolExecutor for tests to avoid multiprocessing complexities
manager = TrainingManager(
max_workers=1, output_dir=str(temp_dir), use_multiprocessing=False
)
yield manager
manager.shutdown()
shutil.rmtree(temp_dir)
def test_training_config():
"""Test training configuration creation"""
config = TrainingConfig(
model_name="figure2", dataset_path="/test/path", epochs=5, batch_size=8
)
assert config.model_name == "figure2"
assert config.epochs == 5
assert config.batch_size == 8
assert config.device == "auto"
def test_training_manager_initialization(training_manager):
"""Test training manager initialization"""
assert training_manager.max_workers == 1
assert len(training_manager.jobs) == 0
def test_submit_training_job(training_manager, temp_dataset):
"""Test submitting a training job"""
config = TrainingConfig(
model_name="figure2", dataset_path=str(temp_dataset), epochs=1, batch_size=4
)
job_id = training_manager.submit_training_job(config)
assert job_id is not None
assert len(job_id) > 0
assert job_id in training_manager.jobs
job = training_manager.get_job_status(job_id)
assert job is not None
assert job.config.model_name == "figure2"
def test_training_job_execution(training_manager, temp_dataset):
"""Test actual training job execution (lightweight test)"""
config = TrainingConfig(
model_name="figure2",
dataset_path=str(temp_dataset),
epochs=1,
num_folds=2, # Reduced for testing
batch_size=4,
)
job_id = training_manager.submit_training_job(config)
# Wait a moment for job to start
import time
time.sleep(1)
job = training_manager.get_job_status(job_id)
assert job.status in [
TrainingStatus.PENDING,
TrainingStatus.RUNNING,
TrainingStatus.COMPLETED,
TrainingStatus.FAILED,
]
def test_list_jobs(training_manager, temp_dataset):
"""Test listing jobs with filters"""
config = TrainingConfig(
model_name="figure2", dataset_path=str(temp_dataset), epochs=1
)
job_id = training_manager.submit_training_job(config)
all_jobs = training_manager.list_jobs()
assert len(all_jobs) >= 1
pending_jobs = training_manager.list_jobs(TrainingStatus.PENDING)
running_jobs = training_manager.list_jobs(TrainingStatus.RUNNING)
# Job should be in one of these states
assert len(pending_jobs) + len(running_jobs) >= 1
def test_global_training_manager():
"""Test global training manager singleton"""
manager1 = get_training_manager()
manager2 = get_training_manager()
assert manager1 is manager2 # Should be same instance
def test_device_selection(training_manager):
"""Test device selection logic"""
# Test auto device selection
device = training_manager._get_device("auto")
assert device.type in ["cpu", "cuda"]
# Test CPU selection
device = training_manager._get_device("cpu")
assert device.type == "cpu"
# Test CUDA selection (should fallback to CPU if not available)
device = training_manager._get_device("cuda")
if torch.cuda.is_available():
assert device.type == "cuda"
else:
assert device.type == "cpu"
def test_invalid_dataset_path(training_manager):
"""Test handling of invalid dataset path"""
config = TrainingConfig(
model_name="figure2", dataset_path="/nonexistent/path", epochs=1
)
job_id = training_manager.submit_training_job(config)
# Wait for job to process
import time
time.sleep(2)
job = training_manager.get_job_status(job_id)
assert job.status == TrainingStatus.FAILED
assert "dataset" in job.error_message.lower()
def test_configurable_cv_strategies():
"""Test different cross-validation strategies"""
# Test StratifiedKFold
skf = get_cv_splitter("stratified_kfold", n_splits=5)
assert hasattr(skf, "split")
# Test KFold
kf = get_cv_splitter("kfold", n_splits=5)
assert hasattr(kf, "split")
# Test TimeSeriesSplit
tss = get_cv_splitter("time_series_split", n_splits=5)
assert hasattr(tss, "split")
# Test default fallback
default = get_cv_splitter("invalid_strategy", n_splits=5)
assert hasattr(default, "split")
def test_spectroscopy_metrics():
"""Test spectroscopy-specific metrics calculation"""
# Create test data
y_true = np.array([0, 0, 1, 1, 0, 1])
y_pred = np.array([0, 1, 1, 1, 0, 0])
probabilities = np.array(
[[0.8, 0.2], [0.4, 0.6], [0.3, 0.7], [0.2, 0.8], [0.9, 0.1], [0.6, 0.4]]
)
metrics = calculate_spectroscopy_metrics(y_true, y_pred, probabilities)
# Check that all expected metrics are present
assert "accuracy" in metrics
assert "f1_score" in metrics
assert "cosine_similarity" in metrics
assert "distribution_similarity" in metrics
# Check that metrics are reasonable
assert 0 <= metrics["accuracy"] <= 1
assert 0 <= metrics["f1_score"] <= 1
assert -1 <= metrics["cosine_similarity"] <= 1
assert 0 <= metrics["distribution_similarity"] <= 1
def test_spectral_cosine_similarity():
"""Test cosine similarity calculation for spectral data"""
# Create test spectra
spectrum1 = np.array([1, 2, 3, 4, 5])
spectrum2 = np.array([2, 4, 6, 8, 10]) # Perfect correlation
spectrum3 = np.array([5, 4, 3, 2, 1]) # Anti-correlation
# Test perfect correlation
sim1 = spectral_cosine_similarity(spectrum1, spectrum2)
assert abs(sim1 - 1.0) < 1e-10
# Test that similarity exists
sim2 = spectral_cosine_similarity(spectrum1, spectrum3)
assert -1 <= sim2 <= 1 # Valid cosine similarity range
# Test self-similarity
sim3 = spectral_cosine_similarity(spectrum1, spectrum1)
assert abs(sim3 - 1.0) < 1e-10
def test_data_augmentation():
"""Test spectral data augmentation"""
# Create test data
X = np.random.rand(10, 100)
y = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
# Test augmentation
X_aug, y_aug = augment_spectral_data(X, y, noise_level=0.01, augmentation_factor=3)
# Check that data is augmented
assert X_aug.shape[0] == X.shape[0] * 3
assert y_aug.shape[0] == y.shape[0] * 3
assert X_aug.shape[1] == X.shape[1] # Same number of features
# Test no augmentation
X_no_aug, y_no_aug = augment_spectral_data(X, y, augmentation_factor=1)
assert np.array_equal(X_no_aug, X)
assert np.array_equal(y_no_aug, y)
def test_enhanced_training_config():
"""Test enhanced training configuration with new parameters"""
config = TrainingConfig(
model_name="figure2",
dataset_path="/test/path",
cv_strategy="time_series_split",
enable_augmentation=True,
noise_level=0.02,
spectral_weight=0.2,
)
assert config.cv_strategy == "time_series_split"
assert config.enable_augmentation == True
assert config.noise_level == 0.02
assert config.spectral_weight == 0.2
# Test serialization includes new fields
config_dict = config.to_dict()
assert "cv_strategy" in config_dict
assert "enable_augmentation" in config_dict
assert "noise_level" in config_dict
assert "spectral_weight" in config_dict
def test_enhanced_dataset_loading_security():
"""Test enhanced dataset loading with security features"""
temp_dir = Path(tempfile.mkdtemp())
training_manager = TrainingManager(
max_workers=1, output_dir=str(temp_dir), use_multiprocessing=False
)
try:
# Create a test dataset with different file formats
dataset_dir = temp_dir / "test_dataset"
(dataset_dir / "stable").mkdir(parents=True)
(dataset_dir / "weathered").mkdir(parents=True)
# Create multiple files to meet minimum requirements
for i in range(6): # Create 6 files per class
# Create CSV files
csv_data = pd.DataFrame(
{
"wavenumber": np.linspace(400, 4000, 100),
"intensity": np.random.rand(100),
}
)
csv_data.to_csv(
dataset_dir / "stable" / f"test_stable_{i}.csv", index=False
)
# Create JSON files
json_data = {
"x": np.linspace(400, 4000, 100).tolist(),
"y": np.random.rand(100).tolist(),
}
with open(dataset_dir / "weathered" / f"test_weathered_{i}.json", "w") as f:
json.dump(json_data, f)
# Test configuration with enhanced features
config = TrainingConfig(
model_name="figure2",
dataset_path=str(dataset_dir),
epochs=1,
cv_strategy="kfold",
enable_augmentation=True,
noise_level=0.01,
)
# Test that the enhanced loading works
from utils.training_manager import TrainingJob, TrainingProgress
job = TrainingJob(job_id="test", config=config, progress=TrainingProgress())
# This should work with the enhanced data loading
X, y = training_manager._load_and_preprocess_data(job)
# Should load data from multiple formats
assert X is not None
assert y is not None
assert len(X) >= 10 # Should have at least 10 samples total
# Test that we have both classes
unique_classes = np.unique(y)
assert len(unique_classes) >= 2
finally:
training_manager.shutdown()
shutil.rmtree(temp_dir)
if __name__ == "__main__":
pytest.main([__file__])
|