Spaces:
Running
Running
File size: 54,182 Bytes
5076875 62a4041 22d9362 62a4041 723ebe4 62a4041 723ebe4 5076875 d0109c7 8b601a3 d0109c7 5076875 d0109c7 723ebe4 5076875 723ebe4 5076875 723ebe4 56c06a1 40a522b 56c06a1 9f156ed 56c06a1 9f156ed 56c06a1 5076875 9a4db95 56c06a1 9f156ed 56c06a1 5076875 56c06a1 9f156ed 56c06a1 5076875 9a4db95 56c06a1 5076875 56c06a1 9f156ed 56c06a1 9a4db95 56c06a1 5076875 56c06a1 5076875 9a4db95 56c06a1 5076875 9f156ed 56c06a1 5076875 9a4db95 56c06a1 9f156ed 56c06a1 9a4db95 56c06a1 9a4db95 56c06a1 9a4db95 56c06a1 9a4db95 56c06a1 9a4db95 56c06a1 9a4db95 56c06a1 9f156ed 56c06a1 9a4db95 56c06a1 9a4db95 56c06a1 9a4db95 56c06a1 9f156ed 9a4db95 40a522b 9f156ed 9a4db95 56c06a1 5076875 723ebe4 4dcddf5 723ebe4 9a4db95 723ebe4 9a4db95 723ebe4 5076875 723ebe4 62a4041 5076875 d0109c7 9a4db95 d0109c7 27f8f90 5076875 d0109c7 5076875 8b601a3 d0109c7 723ebe4 62a4041 40a522b 5076875 d0109c7 40a522b 62a4041 723ebe4 40a522b 723ebe4 40a522b 62a4041 d7065c4 c8f5637 40a522b c8f5637 40a522b 723ebe4 5076875 723ebe4 62a4041 723ebe4 5076875 27f8f90 5076875 27f8f90 5076875 27f8f90 62a4041 723ebe4 62a4041 723ebe4 40a522b 723ebe4 62a4041 723ebe4 62a4041 723ebe4 40a522b 62a4041 40a522b 723ebe4 5076875 27f8f90 723ebe4 62a4041 723ebe4 182c9ce 723ebe4 182c9ce 5076875 182c9ce 723ebe4 182c9ce 723ebe4 27f8f90 9a4db95 27f8f90 9a4db95 5076875 9a4db95 5076875 9a4db95 5076875 9a4db95 5076875 9a4db95 723ebe4 9a4db95 5076875 9a4db95 5076875 9a4db95 22d9362 62a4041 723ebe4 5076875 320b946 8b601a3 40a522b 5076875 40a522b 5076875 40a522b d7065c4 40a522b d7065c4 40a522b 62a4041 40a522b 5076875 40a522b d7065c4 40a522b 5076875 d7065c4 5076875 d7065c4 5076875 62a4041 5076875 62a4041 4dcddf5 62a4041 5076875 d0109c7 56c06a1 d0109c7 56c06a1 d0109c7 56c06a1 d0109c7 5076875 56c06a1 5076875 d0109c7 40a522b 723ebe4 5076875 723ebe4 9a4db95 5076875 9a4db95 b028c2c 9a4db95 e2ae453 9a4db95 5076875 9a4db95 e2ae453 5076875 56c06a1 9a4db95 b028c2c e2ae453 56c06a1 5076875 b54a4ec 723ebe4 56c06a1 5076875 723ebe4 56c06a1 9a4db95 5076875 723ebe4 9a4db95 723ebe4 9a4db95 723ebe4 40a522b 8b601a3 40a522b 5076875 40a522b d0109c7 40a522b 723ebe4 c8f5637 d0109c7 723ebe4 d0109c7 5076875 d0109c7 5076875 d0109c7 5076875 8b601a3 5076875 d0109c7 5076875 8b601a3 56c06a1 8b601a3 56c06a1 ff443f3 56c06a1 8b601a3 56c06a1 8b601a3 56c06a1 5076875 8b601a3 723ebe4 62a4041 40a522b 5076875 40a522b 5076875 723ebe4 5076875 40a522b 723ebe4 40a522b 723ebe4 5076875 723ebe4 5076875 8b601a3 5076875 40a522b d0109c7 40a522b 9e5cab1 40a522b 56c06a1 d0109c7 40a522b 8b601a3 5076875 8b601a3 5076875 8b601a3 5076875 8b601a3 5076875 182c9ce 5076875 182c9ce 8b601a3 5076875 8b601a3 723ebe4 8b601a3 56c06a1 ff443f3 56c06a1 8b601a3 9a4db95 723ebe4 182c9ce 723ebe4 27f8f90 5076875 27f8f90 5076875 27f8f90 5076875 27f8f90 8b601a3 5076875 8b601a3 5076875 8b601a3 27f8f90 5076875 27f8f90 8b601a3 27f8f90 5076875 27f8f90 5076875 27f8f90 5076875 27f8f90 56c06a1 ff443f3 5076875 27f8f90 5076875 27f8f90 5076875 9a4db95 27f8f90 5076875 56c06a1 5076875 27f8f90 5076875 56c06a1 5076875 56c06a1 5076875 27f8f90 56c06a1 27f8f90 5076875 27f8f90 5076875 27f8f90 5076875 723ebe4 62a4041 723ebe4 9a4db95 723ebe4 56c06a1 723ebe4 62a4041 723ebe4 62a4041 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 |
from typing import Union
from utils.multifile import create_batch_uploader, process_multiple_files, display_batch_results
from utils.confidence import calculate_softmax_confidence, get_confidence_badge, create_confidence_progress_html
from utils.results_manager import ResultsManager
from utils.errors import ErrorHandler, safe_execute
from utils.preprocessing import resample_spectrum
from models.resnet_cnn import ResNet1D
from models.figure2_cnn import Figure2CNN
import hashlib
import gc
import time
import io
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
import torch
import torch.nn.functional as F
import streamlit as st
import os
import sys
from pathlib import Path
# Ensure 'utils' directory is in the Python path
utils_path = Path(__file__).resolve().parent / "utils"
if utils_path.is_dir() and str(utils_path) not in sys.path:
sys.path.append(str(utils_path))
matplotlib.use("Agg") # ensure headless rendering in Spaces
# ==Import local modules + new modules==
KEEP_KEYS = {
# ==global UI context we want to keep after "Reset"==
"model_select", # sidebar model key
"input_mode", # radio for Upload|Sample
"uploader_version", # version counter for file uploader
"input_registry", # radio controlling Upload vs Sample
}
# ==Page Configuration==
st.set_page_config(
page_title="ML Polymer Classification",
page_icon="π¬",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
"Get help": "https://github.com/KLab-AI3/ml-polymer-recycling"}
)
# ==============================================================================
# THEME-AWARE CUSTOM CSS
# ==============================================================================
# This CSS block has been refactored to use Streamlit's internal theme
# variables. This ensures that all custom components will automatically adapt
# to both light and dark themes selected by the user in the settings menu.
st.markdown("""
<style>
/* ====== Font Imports (Optional but Recommended) ====== */
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;700&family=Fira+Code:wght@400&display=swap');
/* ====== Base & Typography ====== */
.stApp,
section[data-testid="stSidebar"],
div[data-testid="stMetricValue"],
div[data-testid="stMetricLabel"] {
font-family: 'Inter', sans-serif;
/* Uses the main text color from the current theme (light or dark) */
color: var(--text-color);
}
.kv-val {
font-family: 'Fira Code', monospace;
}
/* ====== Custom Containers: Tabs & Info Boxes ====== */
div[data-testid="stTabs"] > div[role="tablist"] + div {
min-height: 400px;
/* Uses the secondary background color, which is different in light and dark modes */
background-color: var(--secondary-background-color);
/* Border color uses a semi-transparent version of the text color for a subtle effect that works on any background */
border: 10px solid rgba(128, 128, 128, 0.2);
border-radius: 10px;
padding: 24px;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
}
.info-box {
font-size: 0.9rem;
padding: 12px 16px;
border: 1px solid rgba(128, 128, 128, 0.2);
border-radius: 10px;
background-color: var(--secondary-background-color);
}
/* ====== Key-Value Pair Styling ====== */
.kv-row {
display: flex;
justify-content: space-between;
gap: 16px;
padding: 8px 0;
border-bottom: 1px solid rgba(128, 128, 128, 0.2);
}
.kv-row:last-child {
border-bottom: none;
}
.kv-key {
opacity: 0.7;
font-size: 0.9rem;
white-space: nowrap;
}
.kv-val {
font-size: 0.9rem;
overflow-wrap: break-word;
text-align: right;
}
/* ====== Custom Expander Styling ====== */
div.stExpander > details > summary::-webkit-details-marker,
div.stExpander > details > summary::marker,
div[data-testid="stExpander"] summary svg {
display: none !important;
}
div.stExpander > details > summary::after {
content: 'DETAILS';
font-size: 0.75rem;
font-weight: 600;
letter-spacing: 0.5px;
padding: 4px 12px;
border-radius: 999px;
/* The primary color is set in config.toml and adapted by Streamlit */
background-color: var(--primary);
/* Text on the primary color needs high contrast. White works well for our chosen purple. */
transition: background-color 0.2s ease-in-out;
}
div.stExpander > details > summary:hover::after {
/* Using a fixed darker shade on hover. A more advanced solution could use color-mix() in CSS. */
filter: brightness(90%);
}
/* Specialized Expander Labels */
.expander-results div[data-testid="stExpander"] summary::after {
content: "RESULTS";
background-color: #16A34A; /* Green is universal for success */
}
.expander-advanced div[data-testid="stExpander"] summary::after {
content: "ADVANCED";
background-color: #D97706; /* Amber is universal for warning/technical */
}
[data-testid="stExpanderDetails"] {
padding: 16px 4px 4px 4px;
background-color: transparent;
border-top: 1px solid rgba(128, 128, 128, 0.2);
margin-top: 12px;
}
/* ====== Sidebar & Metrics ====== */
section[data-testid="stSidebar"] > div:first-child {
background-color: var(--secondary-background-color);
border-right: 1px solid rgba(128, 128, 128, 0.2);
}
div[data-testid="stMetricValue"] {
font-size: 1.1rem !important;
font-weight: 500;
}
div[data-testid="stMetricLabel"] {
font-size: 0.85rem !important;
opacity: 0.8;
}
/* ====== Interactivity & Accessibility ====== */
:focus-visible {
/* The focus outline now uses the theme's primary color */
outline: 2px solid var(--primary);
outline-offset: 2px;
border-radius: 8px;
}
</style>
""", unsafe_allow_html=True)
# ==CONSTANTS==
TARGET_LEN = 500
SAMPLE_DATA_DIR = Path("sample_data")
# Prefer env var, else 'model_weights' if present; else canonical 'outputs'
MODEL_WEIGHTS_DIR = (
os.getenv("WEIGHTS_DIR")
or ("model_weights" if os.path.isdir("model_weights") else "outputs")
)
# Model configuration
MODEL_CONFIG = {
"Figure2CNN (Baseline)": {
"class": Figure2CNN,
"path": f"{MODEL_WEIGHTS_DIR}/figure2_model.pth",
"emoji": "",
"description": "Baseline CNN with standard filters",
"accuracy": "94.80%",
"f1": "94.30%"
},
"ResNet1D (Advanced)": {
"class": ResNet1D,
"path": f"{MODEL_WEIGHTS_DIR}/resnet_model.pth",
"emoji": "",
"description": "Residual CNN with deeper feature learning",
"accuracy": "96.20%",
"f1": "95.90%"
}
}
# ==Label mapping==
LABEL_MAP = {0: "Stable (Unweathered)", 1: "Weathered (Degraded)"}
# ==UTILITY FUNCTIONS==
def init_session_state():
"""Keep a persistent session state"""
defaults = {
"status_message": "Ready to analyze polymer spectra π¬",
"status_type": "info",
"input_text": None,
"filename": None,
"input_source": None, # "upload" or "sample"
"sample_select": "-- Select Sample --",
"input_mode": "Upload File", # controls which pane is visible
"inference_run_once": False,
"x_raw": None, "y_raw": None, "y_resampled": None,
"log_messages": [],
"uploader_version": 0,
"current_upload_key": "upload_txt_0",
"active_tab": "Details",
"batch_mode": False # Track if in batch mode
}
for k, v in defaults.items():
st.session_state.setdefault(k, v)
for key, default_value in defaults.items():
if key not in st.session_state:
st.session_state[key] = default_value
# ==Initialize results table==
ResultsManager.init_results_table()
def label_file(filename: str) -> int:
"""Extract label from filename based on naming convention"""
name = Path(filename).name.lower()
if name.startswith("sta"):
return 0
elif name.startswith("wea"):
return 1
else:
# Return None for unknown patterns instead of raising error
return -1 # Default value for unknown patterns
@st.cache_data
def load_state_dict(_mtime, model_path):
"""Load state dict with mtime in cache key to detect file changes"""
try:
return torch.load(model_path, map_location="cpu")
except (FileNotFoundError, RuntimeError) as e:
st.warning(f"Error loading state dict: {e}")
return None
@st.cache_resource
def load_model(model_name):
"""Load and cache the specified model with error handling"""
try:
config = MODEL_CONFIG[model_name]
model_class = config["class"]
model_path = config["path"]
# Initialize model
model = model_class(input_length=TARGET_LEN)
# Check if model file exists
if not os.path.exists(model_path):
st.warning(f"β οΈ Model weights not found: {model_path}")
st.info("Using randomly initialized model for demonstration purposes.")
return model, False
# Get mtime for cache invalidation
mtime = os.path.getmtime(model_path)
# Load weights
state_dict = load_state_dict(mtime, model_path)
if state_dict:
model.load_state_dict(state_dict, strict=True)
if model is None:
raise ValueError(
"Model is not loaded. Please check the model configuration or weights.")
model.eval()
return model, True
else:
return model, False
except (FileNotFoundError, KeyError, RuntimeError) as e:
st.error(f"β Error loading model {model_name}: {str(e)}")
return None, False
def cleanup_memory():
"""Clean up memory after inference"""
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
@st.cache_data
def run_inference(y_resampled, model_choice, _cache_key=None):
"""Run model inference and cache results"""
model, model_loaded = load_model(model_choice)
if not model_loaded:
return None, None, None, None, None
input_tensor = torch.tensor(
y_resampled, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
start_time = time.time()
model.eval()
with torch.no_grad():
if model is None:
raise ValueError(
"Model is not loaded. Please check the model configuration or weights.")
logits = model(input_tensor)
prediction = torch.argmax(logits, dim=1).item()
logits_list = logits.detach().numpy().tolist()[0]
probs = F.softmax(logits.detach(), dim=1).cpu().numpy().flatten()
inference_time = time.time() - start_time
cleanup_memory()
return prediction, logits_list, probs, inference_time, logits
@st.cache_data
def get_sample_files():
"""Get list of sample files if available"""
sample_dir = Path(SAMPLE_DATA_DIR)
if sample_dir.exists():
return sorted(list(sample_dir.glob("*.txt")))
return []
def parse_spectrum_data(raw_text):
"""Parse spectrum data from text with robust error handling and validation"""
x_vals, y_vals = [], []
for line in raw_text.splitlines():
line = line.strip()
if not line or line.startswith('#'): # Skip empty lines and comments
continue
try:
# Handle different separators
parts = line.replace(",", " ").split()
numbers = [p for p in parts if p.replace('.', '', 1).replace(
'-', '', 1).replace('+', '', 1).isdigit()]
if len(numbers) >= 2:
x, y = float(numbers[0]), float(numbers[1])
x_vals.append(x)
y_vals.append(y)
except ValueError:
# Skip problematic lines but don't fail completely
continue
if len(x_vals) < 10: # Minimum reasonable spectrum length
raise ValueError(
f"Insufficient data points: {len(x_vals)}. Need at least 10 points.")
x = np.array(x_vals)
y = np.array(y_vals)
# Check for NaNs
if np.any(np.isnan(x)) or np.any(np.isnan(y)):
raise ValueError("Input data contains NaN values")
# Check monotonic increasing x
if not np.all(np.diff(x) > 0):
raise ValueError("Wavenumbers must be strictly increasing")
# Check reasonable range for Raman spectroscopy
if min(x) < 0 or max(x) > 10000 or (max(x) - min(x)) < 100:
raise ValueError(
f"Invalid wavenumber range: {min(x)} - {max(x)}. Expected ~400-4000 cmβ»ΒΉ with span >100")
return x, y
@st.cache_data
def create_spectrum_plot(x_raw, y_raw, x_resampled, y_resampled, _cache_key=None):
"""Create spectrum visualization plot"""
fig, ax = plt.subplots(1, 2, figsize=(13, 5), dpi=100)
# == Raw spectrum ==
ax[0].plot(x_raw, y_raw, label="Raw", color="dimgray", linewidth=1)
ax[0].set_title("Raw Input Spectrum")
ax[0].set_xlabel("Wavenumber (cmβ»ΒΉ)")
ax[0].set_ylabel("Intensity")
ax[0].grid(True, alpha=0.3)
ax[0].legend()
# == Resampled spectrum ==
ax[1].plot(x_resampled, y_resampled, label="Resampled",
color="steelblue", linewidth=1)
ax[1].set_title(f"Resampled ({len(y_resampled)} points)")
ax[1].set_xlabel("Wavenumber (cmβ»ΒΉ)")
ax[1].set_ylabel("Intensity")
ax[1].grid(True, alpha=0.3)
ax[1].legend()
plt.tight_layout()
# == Convert to image ==
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', dpi=100)
buf.seek(0)
plt.close(fig) # Prevent memory leaks
return Image.open(buf)
def render_confidence_progress(
probs: np.ndarray,
labels: list[str] = ["Stable", "Weathered"],
highlight_idx: Union[int, None] = None,
side_by_side: bool = True
):
"""Render Streamlit native progress bars with scientific formatting."""
p = np.asarray(probs, dtype=float)
p = np.clip(p, 0.0, 1.0)
if side_by_side:
cols = st.columns(len(labels))
for i, (lbl, val, col) in enumerate(zip(labels, p, cols)):
with col:
is_highlighted = (
highlight_idx is not None and i == highlight_idx)
label_text = f"**{lbl}**" if is_highlighted else lbl
st.markdown(f"{label_text}: {val*100:.1f}%")
st.progress(int(round(val * 100)))
else:
# Vertical layout for better readability
for i, (lbl, val) in enumerate(zip(labels, p)):
is_highlighted = (highlight_idx is not None and i == highlight_idx)
# Create a container for each probability
with st.container():
col1, col2 = st.columns([3, 1])
with col1:
if is_highlighted:
st.markdown(f"**{lbl}** β Predicted")
else:
st.markdown(f"{lbl}")
with col2:
st.metric(
label="",
value=f"{val*100:.1f}%",
delta=None
)
# Progress bar with conditional styling
if is_highlighted:
st.progress(int(round(val * 100)))
st.caption("π― **Model Prediction**")
else:
st.progress(int(round(val * 100)))
if i < len(labels) - 1: # Add spacing between items
st.markdown("")
def render_kv_grid(d: dict, ncols: int = 2):
"""Display dict as a clean grid of key/value rows using native Streamlit components."""
if not d:
return
items = list(d.items())
cols = st.columns(ncols)
for i, (k, v) in enumerate(items):
with cols[i % ncols]:
st.caption(f"**{k}:** {v}")
def render_model_meta(model_choice: str):
info = MODEL_CONFIG.get(model_choice, {})
emoji = info.get("emoji", "")
desc = info.get("description", "").strip()
acc = info.get("accuracy", "-")
f1 = info.get("f1", "-")
st.caption(f"{emoji} **Model Snapshot** - {model_choice}")
cols = st.columns(2)
with cols[0]:
st.metric("Accuracy", acc)
with cols[1]:
st.metric("F1 Score", f1)
if desc:
st.caption(desc)
def get_confidence_description(logit_margin):
"""Get human-readable confidence description"""
if logit_margin > 1000:
return "VERY HIGH", "π’"
elif logit_margin > 250:
return "HIGH", "π‘"
elif logit_margin > 100:
return "MODERATE", "π "
else:
return "LOW", "π΄"
def log_message(msg: str):
"""Append a timestamped line to the in-app log, creating the buffer if needed."""
ErrorHandler.log_info(msg)
def trigger_run():
"""Set a flag so we can detect button press reliably across reruns"""
st.session_state['run_requested'] = True
def on_sample_change():
"""Read selected sample once and persist as text."""
sel = st.session_state.get("sample_select", "-- Select Sample --")
if sel == "-- Select Sample --":
return
try:
text = (Path(SAMPLE_DATA_DIR / sel).read_text(encoding="utf-8"))
st.session_state["input_text"] = text
st.session_state["filename"] = sel
st.session_state["input_source"] = "sample"
# π§ Clear previous results so right column resets immediately
reset_results("New sample selected")
st.session_state["status_message"] = f"π Sample '{sel}' ready for analysis"
st.session_state["status_type"] = "success"
except (FileNotFoundError, IOError) as e:
st.session_state["status_message"] = f"β Error loading sample: {e}"
st.session_state["status_type"] = "error"
def on_input_mode_change():
"""Reset sample when switching to Upload"""
if st.session_state["input_mode"] == "Upload File":
st.session_state["sample_select"] = "-- Select Sample --"
st.session_state["batch_mode"] = False # Reset batch mode
elif st.session_state["input_mode"] == "Sample Data":
st.session_state["batch_mode"] = False # Reset batch mode
# π§ Reset when switching modes to prevent stale right-column visuals
reset_results("Switched input mode")
def on_model_change():
"""Force the right column back to init state when the model changes"""
reset_results("Model changed")
def reset_results(reason: str = ""):
"""Clear previous inference artifacts so the right column returns to initial state."""
st.session_state["inference_run_once"] = False
st.session_state["x_raw"] = None
st.session_state["y_raw"] = None
st.session_state["y_resampled"] = None
# ||== Clear batch results when resetting ==||
if "batch_results" in st.session_state:
del st.session_state["batch_results"]
# ||== Clear logs between runs ==||
st.session_state["log_messages"] = []
# ||== Always reset the status box ==||
st.session_state["status_message"] = (
f"βΉοΈ {reason}"
if reason else "Ready to analyze polymer spectra π¬"
)
st.session_state["status_type"] = "info"
def reset_ephemeral_state():
"""Comprehensive reset for the entire app state."""
# Define keys that should NOT be cleared by a full reset
keep_keys = {"model_select", "input_mode"}
for k in list(st.session_state.keys()):
if k not in keep_keys:
st.session_state.pop(k, None)
# Re-initialize the core state after clearing
init_session_state()
# CRITICAL: Bump the uploader version to force a widget reset
st.session_state["uploader_version"] += 1
st.session_state["current_upload_key"] = f"upload_txt_{st.session_state['uploader_version']}"
st.rerun()
# --- START: BUG 2 FIX (Callback Function) ---
def clear_batch_results():
"""Callback to clear only the batch results and the results log table."""
if "batch_results" in st.session_state:
del st.session_state["batch_files"]
# Also clear the persistent table from the ResultsManager utility
ResultsManager.clear_results()
st.rerun()
# --- END: BUG 2 FIX (Callback Function) ---
st.rerun()
# Main app
def main():
init_session_state()
# Sidebar
with st.sidebar:
# Header
st.header("AI-Driven Polymer Classification")
st.caption(
"Predict polymer degradation (Stable vs Weathered) from Raman spectra using validated CNN models. β v0.1")
model_labels = [
f"{MODEL_CONFIG[name]['emoji']} {name}" for name in MODEL_CONFIG.keys()]
selected_label = st.selectbox(
"Choose AI Model", model_labels, key="model_select", on_change=on_model_change)
model_choice = selected_label.split(" ", 1)[1]
# ===Compact metadata directly under dropdown===
render_model_meta(model_choice)
# ===Collapsed info to reduce clutter===
with st.expander("About This App", icon=":material/info:", expanded=False):
st.markdown("""
AI-Driven Polymer Aging Prediction and Classification
**Purpose**: Classify polymer degradation using AI
**Input**: Raman spectroscopy `.txt` files
**Models**: CNN architectures for binary classification
**Next**: More trained CNNs in evaluation pipeline
**Contributors**
Dr. Sanmukh Kuppannagari (Mentor)
Dr. Metin Karailyan (Mentor)
Jaser Hasan (Author)
**Links**
[Live HF Space](https://huggingface.co/spaces/dev-jas/polymer-aging-ml)
[GitHub Repository](https://github.com/KLab-AI3/ml-polymer-recycling)
**Citation Figure2CNN (baseline)**
Neo et al., 2023, *Resour. Conserv. Recycl.*, 188, 106718.
[https://doi.org/10.1016/j.resconrec.2022.106718](https://doi.org/10.1016/j.resconrec.2022.106718)
""", )
# Main content area
col1, col2 = st.columns([1, 1.35], gap="small")
with col1:
st.markdown("##### Data Input")
mode = st.radio(
"Input mode",
["Upload File", "Batch Upload", "Sample Data"],
key="input_mode",
horizontal=True,
on_change=on_input_mode_change
)
# ==Upload tab==
if mode == "Upload File":
upload_key = st.session_state["current_upload_key"]
up = st.file_uploader(
"Upload Raman spectrum (.txt)",
type="txt",
help="Upload a text file with wavenumber and intensity columns",
key=upload_key, # β versioned key
)
# ==Process change immediately (no on_change; simpler & reliable)==
if up is not None:
raw = up.read()
text = raw.decode("utf-8") if isinstance(raw, bytes) else raw
# == only reparse if its a different file|source ==
if st.session_state.get("filename") != getattr(up, "name", None) or st.session_state.get("input_source") != "upload":
st.session_state["input_text"] = text
st.session_state["filename"] = getattr(up, "name", None)
st.session_state["input_source"] = "upload"
# Ensure single file mode
st.session_state["batch_mode"] = False
st.session_state["status_message"] = f"File '{st.session_state['filename']}' ready for analysis"
st.session_state["status_type"] = "success"
reset_results("New file uploaded")
# ==Batch Upload tab==
elif mode == "Batch Upload":
st.session_state["batch_mode"] = True
# --- START: BUG 1 & 3 FIX ---
# Use a versioned key to ensure the file uploader resets properly.
batch_upload_key = f"batch_upload_{st.session_state['uploader_version']}"
uploaded_files = st.file_uploader(
"Upload multiple Raman spectrum files (.txt)",
type="txt",
accept_multiple_files=True,
help="Upload one or more text files with wavenumber and intensity columns.",
key=batch_upload_key
)
# --- END: BUG 1 & 3 FIX ---
if uploaded_files:
# --- START: Bug 1 Fix ---
# Use a dictionary to keep only unique files based on name and size
unique_files = {(file.name, file.size): file for file in uploaded_files}
unique_file_list = list(unique_files.values())
num_uploaded = len(uploaded_files)
num_unique = len(unique_file_list)
# Optionally, inform the user that duplicates were removed
if num_uploaded > num_unique:
st.info(
f"βΉοΈ {num_uploaded - num_unique} duplicate file(s) were removed.")
# Use the unique list
st.session_state["batch_files"] = unique_file_list
st.session_state["status_message"] = f"{num_unique} ready for batch analysis"
st.session_state["status_type"] = "success"
# --- END: Bug 1 Fix ---
else:
st.session_state["batch_files"] = []
# This check prevents resetting the status if files are already staged
if not st.session_state.get("batch_files"):
st.session_state["status_message"] = "No files selected for batch processing"
st.session_state["status_type"] = "info"
# ==Sample tab==
elif mode == "Sample Data":
st.session_state["batch_mode"] = False
sample_files = get_sample_files()
if sample_files:
options = ["-- Select Sample --"] + \
[p.name for p in sample_files]
sel = st.selectbox(
"Choose sample spectrum:",
options,
key="sample_select",
on_change=on_sample_change,
)
if sel != "-- Select Sample --":
st.session_state["status_message"] = f"π Sample '{sel}' ready for analysis"
st.session_state["status_type"] = "success"
else:
st.info("No sample data available")
# ==Status box==
msg = st.session_state.get("status_message", "Ready")
typ = st.session_state.get("status_type", "info")
if typ == "success":
st.success(msg)
elif typ == "error":
st.error(msg)
else:
st.info(msg)
# ==Model load==
model, model_loaded = load_model(model_choice)
if not model_loaded:
st.warning("β οΈ Model weights not available - using demo mode")
# ==Ready to run if we have text (single) or files (batch) and a model==|
is_batch_mode = st.session_state.get("batch_mode", False)
batch_files = st.session_state.get("batch_files", [])
inference_ready = False # Initialize with a default value
if is_batch_mode:
inference_ready = len(batch_files) > 0 and (model is not None)
else:
inference_ready = st.session_state.get(
"input_text") is not None and (model is not None)
# === Run Analysis (form submit batches state) ===
with st.form("analysis_form", clear_on_submit=False):
submitted = st.form_submit_button(
"Run Analysis",
type="primary",
disabled=not inference_ready,
)
# Renamed for clarity and uses the robust on_click callback
st.button("Reset All", on_click=reset_ephemeral_state,
help="Clear all uploaded files and results.")
if submitted and inference_ready:
if is_batch_mode:
with st.spinner(f"Processing {len(batch_files)} files ..."):
try:
batch_results = process_multiple_files(
uploaded_files=batch_files,
model_choice=model_choice,
load_model_func=load_model,
run_inference_func=run_inference,
label_file_func=label_file
)
st.session_state["batch_results"] = batch_results
st.success(
f"Successfully processed {len([r for r in batch_results if r.get('success', False)])}/{len(batch_files)} files")
except Exception as e:
st.error(f"Error during batch processing: {e}")
else:
try:
x_raw, y_raw = parse_spectrum_data(
st.session_state["input_text"])
x_resampled, y_resampled = resample_spectrum(
x_raw, y_raw, TARGET_LEN)
st.session_state["x_raw"] = x_raw
st.session_state["y_raw"] = y_raw
st.session_state["x_resampled"] = x_resampled
st.session_state["y_resampled"] = y_resampled
st.session_state["inference_run_once"] = True
except (ValueError, TypeError) as e:
st.error(f"Error processing spectrum data: {e}")
st.session_state["status_message"] = f"β Error: {e}"
st.session_state["status_type"] = "error"
# Results column
with col2:
# Check if we're in batch more or have batch results
is_batch_mode = st.session_state.get("batch_mode", False)
has_batch_results = "batch_results" in st.session_state
if is_batch_mode and has_batch_results:
# Display batch results
st.markdown("##### Batch Analysis Results")
batch_results = st.session_state["batch_results"]
display_batch_results(batch_results)
# Add session results table
st.markdown("---")
# --- START: BUG 2 FIX (Button) ---
# This button will clear all results from col2 correctly.
# st.button("Clear Results", on_click=clear_batch_results,
# help="Clear all uploaded files and results.")
# --- END: BUG 2 FIX (Button) ---
ResultsManager.display_results_table()
elif st.session_state.get("inference_run_once", False) and not is_batch_mode:
st.markdown("##### Analysis Results")
# Get data from session state
x_raw = st.session_state.get('x_raw')
y_raw = st.session_state.get('y_raw')
x_resampled = st.session_state.get('x_resampled') # β NEW
y_resampled = st.session_state.get('y_resampled')
filename = st.session_state.get('filename', 'Unknown')
if all(v is not None for v in [x_raw, y_raw, y_resampled]):
# ===Run inference===
if y_resampled is None:
raise ValueError(
"y_resampled is None. Ensure spectrum data is properly resampled before proceeding.")
cache_key = hashlib.md5(
f"{y_resampled.tobytes()}{model_choice}".encode()).hexdigest()
prediction, logits_list, probs, inference_time, logits = run_inference(
y_resampled, model_choice, _cache_key=cache_key
)
if prediction is None:
st.error(
"β Inference failed: Model not loaded. Please check that weights are available.")
st.stop() # prevents the rest of the code in this block from executing
log_message(
f"Inference completed in {inference_time:.2f}s, prediction: {prediction}")
# ===Get ground truth===
true_label_idx = label_file(filename)
true_label_str = LABEL_MAP.get(
true_label_idx, "Unknown") if true_label_idx is not None else "Unknown"
# ===Get prediction===
predicted_class = LABEL_MAP.get(
int(prediction), f"Class {int(prediction)}")
# Enhanced confidence calculation
if logits is not None:
# Use new softmax-based confidence
probs_np, max_confidence, confidence_level, confidence_emoji = calculate_softmax_confidence(
logits)
confidence_desc = confidence_level
else:
# Fallback to legace method
logit_margin = abs(
(logits_list[0] - logits_list[1]) if logits_list is not None and len(logits_list) >= 2 else 0)
confidence_desc, confidence_emoji = get_confidence_description(
logit_margin)
max_confidence = logit_margin / 10.0 # Normalize for display
probs_np = np.array([])
# Store result in results manager for single file too
ResultsManager.add_results(
filename=filename,
model_name=model_choice,
prediction=int(prediction),
predicted_class=predicted_class,
confidence=max_confidence,
logits=logits_list if logits_list else [],
ground_truth=true_label_idx if true_label_idx >= 0 else None,
processing_time=inference_time if inference_time is not None else 0.0,
metadata={
"confidence_level": confidence_desc,
"confidence_emoji": confidence_emoji
}
)
# ===Precompute Stats===
spec_stats = {
"Original Length": len(x_raw) if x_raw is not None else 0,
"Resampled Length": TARGET_LEN,
"Wavenumber Range": f"{min(x_raw):.1f}-{max(x_raw):.1f} cmβ»ΒΉ" if x_raw is not None else "N/A",
"Intensity Range": f"{min(y_raw):.1f}-{max(y_raw):.1f} au" if y_raw is not None else "N/A",
"Confidence Bucket": confidence_desc,
}
model_path = MODEL_CONFIG[model_choice]["path"]
mtime = os.path.getmtime(
model_path) if os.path.exists(model_path) else None
file_hash = (
hashlib.md5(open(model_path, 'rb').read()).hexdigest()
if os.path.exists(model_path) else "N/A"
)
input_tensor = torch.tensor(
y_resampled, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
model_stats = {
"Architecture": model_choice,
"Model Path": model_path,
"Weights Last Modified": time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(mtime)) if mtime else "N/A",
"Weights Hash (md5)": file_hash,
"Input Shape": list(input_tensor.shape),
"Output Shape": list(logits.shape) if logits is not None else "N/A",
"Inference Time": f"{inference_time:.3f}s",
"Device": "CPU",
"Model Loaded": model_loaded,
}
start_render = time.time()
active_tab = st.selectbox(
"View Results",
["Details", "Technical", "Explanation"],
key="active_tab", # reuse the key you were managing manually
)
if active_tab == "Details":
st.markdown('<div class="expander-results">',
unsafe_allow_html=True)
# Use a dynamic and informative title for the expander
with st.expander(f"Results for {filename}", expanded=True):
# --- START: STREAMLINED METRICS ---
# A single, powerful row for the most important results.
key_metric_cols = st.columns(3)
# Metric 1: The Prediction
key_metric_cols[0].metric(
"Prediction", predicted_class)
# Metric 2: The Confidence (with level in tooltip)
confidence_icon = "π’" if max_confidence >= 0.8 else "π‘" if max_confidence >= 0.6 else "π΄"
key_metric_cols[1].metric(
"Confidence",
f"{confidence_icon} {max_confidence:.1%}",
help=f"Confidence Level: {confidence_desc}"
)
# Metric 3: Ground Truth + Correctness (Combined)
if true_label_idx is not None:
is_correct = (predicted_class == true_label_str)
delta_text = "β
Correct" if is_correct else "β Incorrect"
# Use delta_color="normal" to let the icon provide the visual cue
key_metric_cols[2].metric(
"Ground Truth", true_label_str, delta=delta_text, delta_color="normal")
else:
key_metric_cols[2].metric("Ground Truth", "N/A")
st.divider()
# --- END: STREAMLINED METRICS ---
# --- START: CONSOLIDATED CONFIDENCE ANALYSIS ---
st.markdown("##### Probability Breakdown")
# This custom bullet bar logic remains as it is highly specific and valuable
def create_bullet_bar(probability, width=20, predicted=False):
filled_count = int(probability * width)
bar = "β " * filled_count + \
"β" * (width - filled_count)
percentage = f"{probability:.1%}"
pred_marker = "β© Predicted" if predicted else ""
return f"{bar} {percentage} {pred_marker}"
stable_prob, weathered_prob = probs[0], probs[1]
is_stable_predicted, is_weathered_predicted = (
int(prediction) == 0), (int(prediction) == 1)
st.markdown(f"""
<div style="font-family: 'Fira Code', monospace;">
Stable (Unweathered)<br>
{create_bullet_bar(stable_prob, predicted=is_stable_predicted)}<br><br>
Weathered (Degraded)<br>
{create_bullet_bar(weathered_prob, predicted=is_weathered_predicted)}
</div>
""", unsafe_allow_html=True)
# --- END: CONSOLIDATED CONFIDENCE ANALYSIS ---
st.divider()
# --- START: CLEAN METADATA FOOTER ---
# Secondary info is now a clean, single-line caption
st.caption(
f"Analyzed with **{model_choice}** in **{inference_time:.2f}s**.")
# --- END: CLEAN METADATA FOOTER ---
st.markdown('</div>', unsafe_allow_html=True)
elif active_tab == "Technical":
with st.container():
st.markdown("Technical Diagnostics")
# Model performance metrics
with st.container(border=True):
st.markdown("##### **Model Performance**")
tech_col1, tech_col2 = st.columns(2)
with tech_col1:
st.metric("Inference Time",
f"{inference_time:.3f}s")
st.metric(
"Input Length", f"{len(x_raw) if x_raw is not None else 0} points")
st.metric("Resampled Length",
f"{TARGET_LEN} points")
with tech_col2:
st.metric("Model Loaded",
"β
Yes" if model_loaded else "β No")
st.metric("Device", "CPU")
st.metric("Confidence Score",
f"{max_confidence:.3f}")
# Raw logits display
with st.container(border=True):
st.markdown("##### **Raw Model Outputs (Logits)**")
if logits_list is not None:
logits_df = {
"Class": [LABEL_MAP.get(i, f"Class {i}") for i in range(len(logits_list))],
"Logit Value": [f"{score:.4f}" for score in logits_list],
"Probability": [f"{prob:.4f}" for prob in probs_np] if len(probs_np) > 0 else ["N/A"] * len(logits_list)
}
# Display as a simple table format
for i, (cls, logit, prob) in enumerate(zip(logits_df["Class"], logits_df["Logit Value"], logits_df["Probability"])):
col1, col2, col3 = st.columns([2, 1, 1])
with col1:
if i == prediction:
st.markdown(f"**{cls}** β Predicted")
else:
st.markdown(cls)
with col2:
st.caption(f"Logit: {logit}")
with col3:
st.caption(f"Prob: {prob}")
# Spectrum statistics in organized sections
with st.container(border=True):
st.markdown("##### **Spectrum Analysis**")
spec_cols = st.columns(2)
with spec_cols[0]:
st.markdown("**Original Spectrum:**")
render_kv_grid({
"Length": f"{len(x_raw) if x_raw is not None else 0} points",
"Range": f"{min(x_raw):.1f} - {max(x_raw):.1f} cmβ»ΒΉ" if x_raw is not None else "N/A",
"Min Intensity": f"{min(y_raw):.2e}" if y_raw is not None else "N/A",
"Max Intensity": f"{max(y_raw):.2e}" if y_raw is not None else "N/A"
}, ncols=1)
with spec_cols[1]:
st.markdown("**Processed Spectrum:**")
render_kv_grid({
"Length": f"{TARGET_LEN} points",
"Resampling": "Linear interpolation",
"Normalization": "None",
"Input Shape": f"(1, 1, {TARGET_LEN})"
}, ncols=1)
# Model information
with st.container(border=True):
st.markdown("##### **Model Information**")
model_info_cols = st.columns(2)
with model_info_cols[0]:
render_kv_grid({
"Architecture": model_choice,
"Path": MODEL_CONFIG[model_choice]["path"],
"Weights Modified": time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(mtime)) if mtime else "N/A"
}, ncols=1)
with model_info_cols[1]:
if os.path.exists(model_path):
file_hash = hashlib.md5(
open(model_path, 'rb').read()).hexdigest()
render_kv_grid({
"Weights Hash": f"{file_hash[:16]}...",
"Output Shape": f"(1, {len(LABEL_MAP)})",
"Activation": "Softmax"
}, ncols=1)
# Debug logs (collapsed by default)
with st.expander("π Debug Logs", expanded=False):
log_content = "\n".join(
st.session_state.get("log_messages", []))
if log_content.strip():
st.code(log_content, language="text")
else:
st.caption("No debug logs available")
elif active_tab == "Explanation":
with st.container():
st.markdown("### π Methodology & Interpretation")
# Process explanation
st.markdown("Analysis Pipeline")
process_steps = [
"π **Data Upload**: Raman spectrum file loaded and validated",
"π **Preprocessing**: Spectrum parsed and resampled to 500 data points using linear interpolation",
"π§ **AI Inference**: Convolutional Neural Network analyzes spectral patterns and molecular signatures",
"π **Classification**: Binary prediction with confidence scoring using softmax probabilities",
"β
**Validation**: Ground truth comparison (when available from filename)"
]
for step in process_steps:
st.markdown(step)
st.markdown("---")
# Model interpretation
st.markdown("#### Scientific Interpretation")
interp_col1, interp_col2 = st.columns(2)
with interp_col1:
st.markdown("**Stable (Unweathered) Polymers:**")
st.info("""
- Well-preserved molecular structure
- Minimal oxidative degradation
- Characteristic Raman peaks intact
- Suitable for recycling applications
""")
with interp_col2:
st.markdown("**Weathered (Degraded) Polymers:**")
st.warning("""
- Oxidized molecular bonds
- Surface degradation present
- Altered spectral signatures
- May require additional processing
""")
st.markdown("---")
# Applications
st.markdown("#### Research Applications")
applications = [
"π¬ **Material Science**: Polymer degradation studies",
"β»οΈ **Recycling Research**: Viability assessment for circular economy",
"π± **Environmental Science**: Microplastic weathering analysis",
"π **Quality Control**: Manufacturing process monitoring",
"π **Longevity Studies**: Material aging prediction"
]
for app in applications:
st.markdown(app)
# Technical details
# MODIFIED: Wrap the expander in a div with the 'expander-advanced' class
st.markdown('<div class="expander-advanced">',
unsafe_allow_html=True)
with st.expander("π§ Technical Details", expanded=False):
st.markdown("""
**Model Architecture:**
- Convolutional layers for feature extraction
- Residual connections for gradient flow
- Fully connected layers for classification
- Softmax activation for probability distribution
**Performance Metrics:**
- Accuracy: 94.8-96.2% on validation set
- F1-Score: 94.3-95.9% across classes
- Robust to spectral noise and baseline variations
**Data Processing:**
- Input: Raman spectra (any length)
- Resampling: Linear interpolation to 500 points
- Normalization: None (preserves intensity relationships)
""")
st.markdown(
'</div>', unsafe_allow_html=True) # Close the wrapper div
render_time = time.time() - start_render
log_message(
f"col2 rendered in {render_time:.2f}s, active tab: {active_tab}")
with st.expander("Spectrum Preprocessing Results", expanded=False):
st.caption("<br>Spectral Analysis", unsafe_allow_html=True)
# Add some context about the preprocessing
st.markdown("""
**Preprocessing Overview:**
- **Original Spectrum**: Raw Raman data as uploaded
- **Resampled Spectrum**: Data interpolated to 500 points for model input
- **Purpose**: Ensures consistent input dimensions for neural network
""")
# Create and display plot
cache_key = hashlib.md5(
f"{(x_raw.tobytes() if x_raw is not None else b'')}"
f"{(y_raw.tobytes() if y_raw is not None else b'')}"
f"{(x_resampled.tobytes() if x_resampled is not None else b'')}"
f"{(y_resampled.tobytes() if y_resampled is not None else b'')}".encode()
).hexdigest()
spectrum_plot = create_spectrum_plot(
x_raw, y_raw, x_resampled, y_resampled, _cache_key=cache_key)
st.image(
spectrum_plot, caption="Raman Spectrum: Raw vs Processed", use_container_width=True)
else:
st.error(
"β Missing spectrum data. Please upload a file and run analysis.")
else:
# ===Getting Started===
st.markdown("""
##### How to Get Started
1. **Select an AI Model:** Use the dropdown menu in the sidebar to choose a model.
2. **Provide Your Data:** Select one of the three input modes:
- **Upload File:** Analyze a single spectrum.
- **Batch Upload:** Process multiple files at once.
- **Sample Data:** Explore functionality with pre-loaded examples.
3. **Run Analysis:** Click the "Run Analysis" button to generate the classification results.
---
##### Supported Data Format
- **File Type:** Plain text (`.txt`)
- **Content:** Must contain two columns: `wavenumber` and `intensity`.
- **Separators:** Values can be separated by spaces or commas.
- **Preprocessing:** Your spectrum will be automatically resampled to 500 data points to match the model's input requirements.
---
##### Example Applications
- π¬ Research on polymer degradation
- β»οΈ Recycling feasibility assessment
- π± Sustainability impact studies
- π Quality control in manufacturing
""")
# Run the application
main()
|