File size: 993 Bytes
80b95e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
"""

This script handles document embedding using EmbeddingGemma.

This is the entry point for indexing documents.

TODO: Wire this to FAISS

"""

import os
from sentence_transformers import SentenceTransformer


def embed_documents(path: str, config: dict):
    try:
        model = SentenceTransformer(config["embedding"]["model_path"])
    except Exception as e:
        print(f"Error loading model: {str(e)}")

    model = SentenceTransformer(config["embedding"]["model_path"])
    embeddings = []

    for fname in os.listdir(path):
        with open(os.path.join(path, fname), "r", encoding="utf-8") as f:
            text = f.read()
            emb = model.encode(text)
            if emb is not None:
                embeddings.append((fname, emb))
            else:
                print(f"Embedding failed for {fname}.")

    print(f"Total embeddings created: {len(embeddings)}")
    return embeddings

    # TODO: Save embeddings to disk or vector store