File size: 6,851 Bytes
6f6fd13
ac059f4
 
3815be3
 
6f6fd13
 
 
93b48cb
6f6fd13
 
d98455c
9fbfaa6
6f6fd13
3815be3
6f6fd13
d98455c
 
3815be3
 
 
 
 
 
 
 
 
9fbfaa6
6f6fd13
84d4ed6
6f6fd13
 
 
 
 
 
 
 
 
 
 
 
 
3815be3
6f6fd13
d98455c
 
3815be3
6f6fd13
3815be3
d98455c
 
 
 
6f6fd13
d98455c
3815be3
 
ac059f4
3815be3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f6fd13
93b48cb
 
d98455c
 
99122c4
d98455c
 
93b48cb
 
 
 
 
 
 
d98455c
 
 
99122c4
d98455c
 
93b48cb
 
6f6fd13
93b48cb
 
 
 
 
 
 
 
3346920
 
93b48cb
 
3346920
d98455c
3346920
99122c4
3346920
93b48cb
 
 
 
 
 
 
d98455c
 
 
93b48cb
d98455c
93b48cb
d98455c
93b48cb
 
 
d98455c
 
 
 
 
 
 
 
 
 
 
 
93b48cb
 
 
6f6fd13
 
 
ac059f4
d98455c
3815be3
d98455c
3815be3
 
 
 
 
d98455c
 
 
 
3815be3
 
 
93b48cb
 
d98455c
 
93b48cb
 
 
 
 
 
 
 
6f6fd13
 
 
3346920
6f6fd13
 
d98455c
 
9fbfaa6
d98455c
6f6fd13
9fbfaa6
6f6fd13
 
 
 
 
 
 
d98455c
6f6fd13
 
 
 
 
 
 
93b48cb
 
3815be3
 
9fbfaa6
ac059f4
 
 
 
 
93b48cb
 
 
 
 
 
ac059f4
6f6fd13
 
57047e5
6f6fd13
 
 
 
57047e5
 
6f6fd13
57047e5
6f6fd13
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
from pathlib import Path
import random
from typing import List
import tempfile
import subprocess

import argbind
from tqdm import tqdm
import torch

from vampnet.interface import Interface
from vampnet import mask as pmask
import audiotools as at

Interface: Interface = argbind.bind(Interface)



def calculate_bitrate(
        interface, num_codebooks, 
        downsample_factor
    ):
    bit_width = 10
    sr = interface.codec.sample_rate
    hop = interface.codec.hop_size
    rate = (sr / hop) * ((bit_width * num_codebooks) / downsample_factor)
    return rate

def baseline(sig, interface):
    return interface.preprocess(sig)

def reconstructed(sig, interface):
    return interface.to_signal(
        interface.encode(sig)
    )

def coarse2fine(sig, interface):
    z = interface.encode(sig)
    z = z[:, :interface.c2f.n_conditioning_codebooks, :]

    z = interface.coarse_to_fine(z)
    return interface.to_signal(z)

class CoarseCond:

    def __init__(self, num_conditioning_codebooks, downsample_factor):
        self.num_conditioning_codebooks = num_conditioning_codebooks
        self.downsample_factor = downsample_factor

    def __call__(self, sig, interface):
        z = interface.encode(sig)
        mask = pmask.full_mask(z)
        mask = pmask.codebook_unmask(mask, self.num_conditioning_codebooks)
        mask = pmask.periodic_mask(mask, self.downsample_factor)

        zv = interface.coarse_vamp(z, mask)
        zv = interface.coarse_to_fine(zv)
        return interface.to_signal(zv)

def opus(sig, interface, bitrate=128):
    sig = interface.preprocess(sig)
    
    with tempfile.NamedTemporaryFile(suffix=".wav") as f:
        sig.write(f.name)

        opus_name = Path(f.name).with_suffix(".opus")
        # convert to opus
        cmd = [
            "ffmpeg", "-y", "-i", f.name, 
            "-c:a", "libopus", 
            "-b:a", f"{bitrate}", 
           opus_name
        ]
        subprocess.run(cmd, check=True)

        # convert back to wav
        output_name = Path(f"{f.name}-opus").with_suffix(".wav")
        cmd = [
            "ffmpeg", "-y", "-i", opus_name, 
            output_name
        ]

        subprocess.run(cmd, check=True)

        sig = at.AudioSignal(
            output_name, 
            sample_rate=sig.sample_rate
        )
    return sig

def mask_ratio_1_step(ratio=1.0):
    def wrapper(sig, interface):
        z = interface.encode(sig)
        mask = pmask.linear_random(z, ratio)
        zv = interface.coarse_vamp(
            z, 
            mask,
            sampling_steps=1, 
        )

        return interface.to_signal(zv)
    return wrapper

def num_sampling_steps(num_steps=1):
    def wrapper(sig, interface: Interface):
        z = interface.encode(sig)
        mask = pmask.periodic_mask(z, 16)
        zv = interface.coarse_vamp(
            z, 
            mask,
            sampling_steps=num_steps, 
        )

        zv = interface.coarse_to_fine(zv)
        return interface.to_signal(zv)
    return wrapper

def beat_mask(ctx_time):
    def wrapper(sig, interface):
        beat_mask = interface.make_beat_mask(
            sig,
            before_beat_s=ctx_time/2,
            after_beat_s=ctx_time/2,
            invert=True
        )

        z = interface.encode(sig)

        zv = interface.coarse_vamp(
            z, beat_mask
        )

        zv = interface.coarse_to_fine(zv)
        return interface.to_signal(zv)
    return wrapper

def inpaint(ctx_time):
    def wrapper(sig, interface: Interface):
        z = interface.encode(sig)
        mask = pmask.inpaint(z, interface.s2t(ctx_time), interface.s2t(ctx_time))

        zv = interface.coarse_vamp(z, mask)
        zv = interface.coarse_to_fine(zv)
        
        return interface.to_signal(zv)
    return wrapper

def token_noise(noise_amt):
    def wrapper(sig, interface: Interface):
        z = interface.encode(sig)
        mask = pmask.random(z, noise_amt)
        z = torch.where(
            mask, 
            torch.randint_like(z, 0, interface.coarse.vocab_size), 
            z
        )
        return interface.to_signal(z)
    return wrapper

EXP_REGISTRY = {}

EXP_REGISTRY["gen-compression"] = {
    "baseline": baseline,
    "reconstructed": reconstructed,
    "coarse2fine": coarse2fine,
    **{
        f"{n}_codebooks_downsampled_{x}x": CoarseCond(num_conditioning_codebooks=n, downsample_factor=x)
            for (n, x) in (
                (1, 1), # 1 codebook, no downsampling
                (4, 4), # 4 codebooks, downsampled 4x
                (4, 16), # 4 codebooks, downsampled 16x
                (4, 32), # 4 codebooks, downsampled 16x
            )
    }, 
    **{
        f"token_noise_{x}": mask_ratio_1_step(ratio=x)
            for x in [0.25, 0.5, 0.75]
    },

}


EXP_REGISTRY["sampling-steps"] = {
    # "codec": reconstructed,
    **{f"steps_{n}": num_sampling_steps(n)  for n in [1, 4, 12, 36, 64, 72]},
}


EXP_REGISTRY["musical-sampling"] = {
    **{f"beat_mask_{t}": beat_mask(t) for t in [0.075]}, 
    **{f"inpaint_{t}": inpaint(t) for t in [0.5, 1.0,]}, # multiply these by 2 (they go left and right)
}

@argbind.bind(without_prefix=True)
def main(
        sources=[
            "/media/CHONK/hugo/spotdl/val",
        ], 
        output_dir: str = "./samples",
        max_excerpts: int = 2000,
        exp_type: str = "gen-compression", 
        seed: int = 0,
        ext: str = [".mp3"],
    ):
    at.util.seed(seed)
    interface = Interface()

    output_dir = Path(output_dir) 
    output_dir.mkdir(exist_ok=True, parents=True)

    from audiotools.data.datasets import AudioLoader, AudioDataset

    loader = AudioLoader(sources=sources, shuffle_state=seed, ext=ext)
    dataset = AudioDataset(loader, 
        sample_rate=interface.codec.sample_rate, 
        duration=interface.coarse.chunk_size_s, 
        n_examples=max_excerpts, 
        without_replacement=True,
    )

    if exp_type in EXP_REGISTRY:
        SAMPLE_CONDS = EXP_REGISTRY[exp_type]
    else:
        raise ValueError(f"Unknown exp_type {exp_type}")


    indices = list(range(max_excerpts))
    random.shuffle(indices)
    for i in tqdm(indices):
        # if all our files are already there, skip
        done = []
        for name in SAMPLE_CONDS:
            o_dir = Path(output_dir) / name
            done.append((o_dir / f"{i}.wav").exists())
        if all(done):
            continue

        sig = dataset[i]["signal"]
        results = {
            name: cond(sig, interface).cpu()
            for name, cond in SAMPLE_CONDS.items()
        }

        for name, sig in results.items():
            o_dir = Path(output_dir) / name
            o_dir.mkdir(exist_ok=True, parents=True)

            sig.write(o_dir / f"{i}.wav")

if __name__ == "__main__":
    args = argbind.parse_args()

    with argbind.scope(args):
        main()