File size: 17,446 Bytes
4f09ecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2357f9d
4f09ecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
456f9ce
944833f
 
264750d
40d2b47
cfbbf4b
944833f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
456f9ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277dfb0
4f09ecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f952795
4f09ecf
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
"""
Search-TTA demo
"""

# ────────────────────────── imports ───────────────────────────────────
import cv2
import gradio as gr
import torch
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import io
import torchaudio
import spaces   # integration with ZeroGPU on hf

from torchvision import transforms
import open_clip
from clip_vision_per_patch_model import CLIPVisionPerPatchModel
from transformers import ClapAudioModelWithProjection
from transformers import ClapProcessor

# ────────────────────────── global config & models ────────────────────
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# BioCLIP (ground-image & text encoder)
bio_model, _, _ = open_clip.create_model_and_transforms("hf-hub:imageomics/bioclip")
bio_model = bio_model.to(device).eval()
bio_tokenizer = open_clip.get_tokenizer("hf-hub:imageomics/bioclip")

# Satellite patch encoder CLIP-L-336 per-patch)
sat_model: CLIPVisionPerPatchModel = (
    CLIPVisionPerPatchModel.from_pretrained("derektan95/search-tta-sat")
    .to(device)
    .eval()
)

# Sound CLAP model
sound_model: ClapAudioModelWithProjection = (
    ClapAudioModelWithProjection.from_pretrained("derektan95/search-tta-sound")
    .to(device)
    .eval()
)
sound_processor: ClapProcessor = ClapProcessor.from_pretrained("derektan95/search-tta-sound")
SAMPLE_RATE = 48000

logit_scale = torch.nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
logit_scale = logit_scale.exp()
blur_kernel = (5,5)

# ────────────────────────── transforms (exact spec) ───────────────────
img_transform = transforms.Compose(
    [
        transforms.Resize((256, 256)),
        transforms.CenterCrop((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(
            mean=[0.485, 0.456, 0.406],
            std=[0.229, 0.224, 0.225],
        ),
    ]
)

imo_transform = transforms.Compose(
    [
        transforms.Resize((336, 336)),
        transforms.ToTensor(),
        transforms.Normalize(
            mean=[0.485, 0.456, 0.406],
            std=[0.229, 0.224, 0.225],
        ),
    ]
)

def get_audio_clap(path_to_audio,format="mp3",padding="repeatpad",truncation="fusion"):
    track, sr = torchaudio.load(path_to_audio, format=format)  # torchaudio.load(path_to_audio)
    track = track.mean(axis=0)
    track = torchaudio.functional.resample(track, orig_freq=sr, new_freq=SAMPLE_RATE)
    output = sound_processor(audios=track, sampling_rate=SAMPLE_RATE, max_length_s=10, return_tensors="pt",padding=padding,truncation=truncation)
    return output

# ────────────────────────── helpers ───────────────────────────────────

@torch.no_grad()
def _encode_ground(img_pil: Image.Image) -> torch.Tensor:
    img = img_transform(img_pil).unsqueeze(0).to(device)
    img_embeds, *_ = bio_model(img) 
    return img_embeds


@torch.no_grad()
def _encode_text(text: str) -> torch.Tensor:
    toks = bio_tokenizer(text).to(device)
    _, txt_embeds, _ = bio_model(text=toks)
    return txt_embeds


@torch.no_grad()
def _encode_sat(img_pil: Image.Image) -> torch.Tensor:
    imo = imo_transform(img_pil).unsqueeze(0).to(device)
    imo_embeds = sat_model(imo)
    return imo_embeds


@torch.no_grad()
def _encode_sound(sound) -> torch.Tensor:
    processed_sound = get_audio_clap(sound)
    for k in processed_sound.keys():
        processed_sound[k] = processed_sound[k].to(device)
    unnormalized_audio_embeds = sound_model(**processed_sound).audio_embeds
    sound_embeds = torch.nn.functional.normalize(unnormalized_audio_embeds, dim=-1)
    return sound_embeds


def _similarity_heatmap(query: torch.Tensor, patches: torch.Tensor) -> np.ndarray:
    sims = torch.matmul(query, patches.t()) * logit_scale
    sims = sims.t().sigmoid()
    sims = sims[1:].squeeze()  # drop CLS token
    side = int(np.sqrt(len(sims)))
    sims = sims.reshape(side, side)
    return sims.cpu().detach().numpy()


def _array_to_pil(arr: np.ndarray) -> Image.Image:
    """
    Render arr with viridis, automatically stretching its own min→max to 0→1
    so that the most-similar patches appear yellow.
    """

    # Gausian Smoothing
    if blur_kernel != (0,0):
        arr = cv2.GaussianBlur(arr, blur_kernel, 0)

    # --- contrast-stretch to local 0-1 range --------------------------
    arr_min, arr_max = float(arr.min()), float(arr.max())
    if arr_max - arr_min < 1e-6:        # avoid /0 when the heat-map is flat
        arr_scaled = np.zeros_like(arr)
    else:
        arr_scaled = (arr - arr_min) / (arr_max - arr_min)
    # ------------------------------------------------------------------
    fig, ax = plt.subplots(figsize=(2.6, 2.6), dpi=96)
    ax.imshow(arr_scaled, cmap="viridis", vmin=0.0, vmax=1.0)
    ax.axis("off")
    buf = io.BytesIO()
    plt.tight_layout(pad=0)
    fig.savefig(buf, format="png", bbox_inches="tight", pad_inches=0)
    plt.close(fig)
    buf.seek(0)
    return Image.open(buf)

# ────────────────────────── main inference ────────────────────────────
# integration with ZeroGPU on hf
@spaces.GPU(duration=5)
def process(
    sat_img: Image.Image,
    taxonomy: str,
    ground_img: Image.Image | None,
    sound: torch.Tensor | None,
):
    if sat_img is None:
        return None, None

    patches = _encode_sat(sat_img)

    heat_ground, heat_text, heat_sound = None, None, None

    if ground_img is not None:
        q_img = _encode_ground(ground_img)
        heat_ground = _array_to_pil(_similarity_heatmap(q_img, patches))

    if taxonomy.strip():
        q_txt = _encode_text(taxonomy.strip())
        heat_text = _array_to_pil(_similarity_heatmap(q_txt, patches))

    if sound is not None:
        q_sound = _encode_sound(sound)
        heat_sound = _array_to_pil(_similarity_heatmap(q_sound, patches))

    return heat_ground, heat_text, heat_sound


# ────────────────────────── Gradio UI ─────────────────────────────────
with gr.Blocks(title="Search-TTA", theme=gr.themes.Base()) as demo:

    gr.Markdown(
        """
        # Search-TTA: A Multimodal Test-Time Adaptation Framework for Visual Search in the Wild Demo
        Click on any of the <b>examples below</b> and run the <b>multimodal inference demo</b>. Check out the <b>test-time adaptation feature</b> by switching to the previous tab above. <br>
        If you encounter any errors, refresh the browser and rerun the demo, or try again the next day. We will improve this in the future. <br>
        <a href="https://search-tta.github.io">Project Website</a> 
        """
    )

    # with gr.Row():
    # gr.Markdown(
    # """
    # <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
    #     <div>
    #     <h1>Search-TTA: A Multimodal Test-Time Adaptation Framework for Visual Search in the Wild</h1>
    #     <span></span>
    #     <h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\
    #     <a href="https://search-tta.github.io">Project Website</a>
    #     </h2>
    #     <span></span>
    #     <h2 style='font-weight: 450; font-size: 0.5rem; margin: 0rem'>[Work in Progress]</h2>
    #     </div>
    # </div>
    # """
    # <h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>WACV 2025</h2>

    #     <h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\
    #     <a href="https://derektan95.github.io">Derek M. S. Tan</a>,
    #     <a href="https://chinchinati.github.io/">Shailesh</a>,
    #     <a href="https://www.linkedin.com/in/boyang-liu-nus">Boyang Liu</a>,
    #     <a href="https://www.linkedin.com/in/loki-silvres">Alok Raj</a>,
    #     <a href="https://www.linkedin.com/in/ang-qi-xuan-714347142">Qi Xuan Ang</a>,
    #     <a href="https://weihengdai.top">Weiheng Dai</a>,
    #     <a href="https://www.linkedin.com/in/tanishqduhan">Tanishq Duhan</a>,
    #     <a href="https://www.linkedin.com/in/jimmychiun">Jimmy Chiun</a>,
    #     <a href="https://www.yuhongcao.online/">Yuhong Cao</a>,
    #     <a href="https://www.cs.toronto.edu/~florian/">Florian Shkurti</a>,
    #     <a href="https://www.marmotlab.org/bio.html">Guillaume Sartoretti</a>
    # </h2>
    # <h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>National University of Singapore, University of Toronto, IIT-Dhanbad, Singapore Technologies Engineering</h2>
    # )

    with gr.Row(variant="panel"):

        # LEFT COLUMN  (satellite, taxonomy, run)
        with gr.Column():
            sat_input = gr.Image(
                label="Satellite Image",
                sources=["upload"],
                type="pil",
                height=320,
            )
            taxonomy_input = gr.Textbox(
                label="Full Taxonomy Name (optional)",
                placeholder="e.g. Animalia Chordata Mammalia Rodentia Sciuridae Marmota marmota",
            )

            # ─── NEW: sound input ───────────────────────────
            sound_input = gr.Audio(
                label="Sound Input (optional)",
                sources=["upload"],     # or "microphone" / "url" as you prefer
                type="filepath",     # or "numpy" if you want raw arrays
            )
            run_btn = gr.Button("Run", variant="primary")

        # RIGHT COLUMN  (ground image + two heat-maps)
        with gr.Column():
            ground_input = gr.Image(
                label="Ground-level Image (optional)",
                sources=["upload"],
                type="pil",
                height=320,
            )
            gr.Markdown("### Heat-map Results")
            with gr.Row():
                # Separate label and image to avoid overlap
                with gr.Column(scale=1, min_width=100):
                    gr.Markdown("**Ground Image Query**", elem_id="label-ground")
                    heat_ground_out = gr.Image(
                        show_label=False,
                        height=160,
                        # width=160,
                    )
                with gr.Column(scale=1, min_width=100):
                    gr.Markdown("**Text Query**", elem_id="label-text")
                    heat_text_out = gr.Image(
                        show_label=False,
                        height=160,
                        # width=160,
                    )
                with gr.Column(scale=1, min_width=100):
                    gr.Markdown("**Sound Query**", elem_id="label-sound")
                    heat_sound_out = gr.Image(
                        show_label=False,
                        height=160,
                        # width=160,
                    )
            # ─── NEW: sound output ─────────────────────────
            # sound_output = gr.Audio(
            #     label="Playback",
            # )
            

    # EXAMPLES
    with gr.Row():
        gr.Markdown("### In-Domain Taxonomy")
    with gr.Row():
        gr.Examples(
            examples=[
                [
                    "examples/Animalia_Chordata_Aves_Charadriiformes_Laridae_Larus_marinus/80645_39.76079_-74.10316.jpg",
                    "examples/Animalia_Chordata_Aves_Charadriiformes_Laridae_Larus_marinus/cc1ebaf9-899d-49f2-81c8-d452249a8087.jpg",
                    "Animalia Chordata Aves Charadriiformes Laridae Larus marinus",
                    "examples/Animalia_Chordata_Aves_Charadriiformes_Laridae_Larus_marinus/89758229.mp3"
                ],
                [
                    "examples/Animalia_Chordata_Mammalia_Rodentia_Caviidae_Hydrochoerus_hydrochaeris/28871_-12.80255_-69.29999.jpg",
                    "examples/Animalia_Chordata_Mammalia_Rodentia_Caviidae_Hydrochoerus_hydrochaeris/1b8064f8-7deb-4b30-98cd-69da98ba6a3d.jpg",
                    "Animalia Chordata Mammalia Rodentia Caviidae Hydrochoerus hydrochaeris",
                    "examples/Animalia_Chordata_Mammalia_Rodentia_Caviidae_Hydrochoerus_hydrochaeris/166631961.mp3"
                ],
                [
                    "examples/Animalia_Arthropoda_Malacostraca_Decapoda_Ocypodidae_Ocypode_quadrata/277303_38.72364_-75.07749.jpg",
                    "examples/Animalia_Arthropoda_Malacostraca_Decapoda_Ocypodidae_Ocypode_quadrata/0b9cc264-a2ba-44bd-8e41-0d01a6edd1e8.jpg",
                    "Animalia Arthropoda Malacostraca Decapoda Ocypodidae Ocypode quadrata",
                    "examples/Animalia_Arthropoda_Malacostraca_Decapoda_Ocypodidae_Ocypode_quadrata/12372063.mp3"
                ],
                [
                    "examples/Animalia_Chordata_Mammalia_Rodentia_Sciuridae_Marmota_marmota/388246_45.49036_7.14796.jpg",
                    "examples/Animalia_Chordata_Mammalia_Rodentia_Sciuridae_Marmota_marmota/327e1f07-692b-4140-8a3e-bd098bc064ff.jpg",
                    "Animalia Chordata Mammalia Rodentia Sciuridae Marmota marmota",
                    "examples/Animalia_Chordata_Mammalia_Rodentia_Sciuridae_Marmota_marmota/59677071.mp3"
                ],
                [
                    "examples/Animalia_Chordata_Reptilia_Squamata_Varanidae_Varanus_salvator/410613_5.35573_100.28948.jpg",
                    "examples/Animalia_Chordata_Reptilia_Squamata_Varanidae_Varanus_salvator/461d8e6c-0e66-4acc-8ecd-bfd9c218bc14.jpg",
                    "Animalia Chordata Reptilia Squamata Varanidae Varanus salvator",
                    None
                ],
            ],
            inputs=[sat_input, ground_input, taxonomy_input, sound_input],
            outputs=[heat_ground_out, heat_text_out, heat_sound_out],
            fn=process,
            cache_examples=False,
        )

    # EXAMPLES
    with gr.Row():
        gr.Markdown("### Out-Domain Taxonomy")
    with gr.Row():
        gr.Examples(
            examples=[
                [
                    "examples/Animalia_Chordata_Mammalia_Carnivora_Phocidae_Mirounga_angustirostris/27423_35.64005_-121.17595.jpg",
                    "examples/Animalia_Chordata_Mammalia_Carnivora_Phocidae_Mirounga_angustirostris/3aac526d-c921-452a-af6a-cb4f2f52e2c4.jpg",
                    "Animalia Chordata Mammalia Carnivora Phocidae Mirounga angustirostris",
                    "examples/Animalia_Chordata_Mammalia_Carnivora_Phocidae_Mirounga_angustirostris/3123948.mp3"
                ],
                [
                    "examples/Animalia_Chordata_Mammalia_Carnivora_Canidae_Canis_aureus/1528408_13.00422_80.23033.jpg",
                    "examples/Animalia_Chordata_Mammalia_Carnivora_Canidae_Canis_aureus/37faabd2-a613-4461-b27e-82fe5955ecaf.jpg",
                    "Animalia Chordata Mammalia Carnivora Canidae Canis aureus",
                    "examples/Animalia_Chordata_Mammalia_Carnivora_Canidae_Canis_aureus/189318716.mp3"
                ],
                [
                    "examples/Animalia_Chordata_Mammalia_Carnivora_Ursidae_Ursus_americanus/yosemite_v3_resized.png",
                    "examples/Animalia_Chordata_Mammalia_Carnivora_Ursidae_Ursus_americanus/248820933.jpeg",
                    "Animalia Chordata Mammalia Carnivora Ursidae Ursus americanus",
                    None
                ],
                [
                    "examples/Animalia_Chordata_Mammalia_Carnivora_Canidae_Urocyon_littoralis/304160_34.0144_-119.54417.jpg",
                    "examples/Animalia_Chordata_Mammalia_Carnivora_Canidae_Urocyon_littoralis/0cbdfbf2-6cfe-4d61-9602-c949f24d0293.jpg",
                    "Animalia Chordata Mammalia Carnivora Canidae Urocyon littoralis",
                    None
                ],
            ],
            inputs=[sat_input, ground_input, taxonomy_input, sound_input],
            outputs=[heat_ground_out, heat_text_out, heat_sound_out],
            fn=process,
            cache_examples=False,
        )

    # CALLBACK
    run_btn.click(
        fn=process,
        inputs=[sat_input, taxonomy_input, ground_input, sound_input],
        outputs=[heat_ground_out, heat_text_out, heat_sound_out],
    )

    # Footer to point out to model and data from app page.
    gr.Markdown(
        """
        The satellite image CLIP encoder is fine-tuned using [Sentinel-2 Level 2A](https://docs.sentinel-hub.com/api/latest/data/sentinel-2-l2a/) satellite image and taxonomy images (with GPS locations) from [iNaturalist](https://inaturalist.org/). The sound CLIP encoder is fine-tuned with a subset of the same taxonomy images and their corresponding sounds from [iNaturalist](https://inaturalist.org/). Some of these iNaturalist data are also used in [Taxabind](https://arxiv.org/abs/2411.00683). Note that while some of the examples above result in poor probability distributions, they will be improved using our test-time adaptation framework during the search process.
        """
    )

# LAUNCH
if __name__ == "__main__":
    demo.queue(max_size=15)
    demo.launch(share=True)