Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,446 Bytes
4f09ecf 2357f9d 4f09ecf 456f9ce 944833f 264750d 40d2b47 cfbbf4b 944833f 456f9ce 277dfb0 4f09ecf f952795 4f09ecf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
"""
Search-TTA demo
"""
# ββββββββββββββββββββββββββ imports βββββββββββββββββββββββββββββββββββ
import cv2
import gradio as gr
import torch
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import io
import torchaudio
import spaces # integration with ZeroGPU on hf
from torchvision import transforms
import open_clip
from clip_vision_per_patch_model import CLIPVisionPerPatchModel
from transformers import ClapAudioModelWithProjection
from transformers import ClapProcessor
# ββββββββββββββββββββββββββ global config & models ββββββββββββββββββββ
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# BioCLIP (ground-image & text encoder)
bio_model, _, _ = open_clip.create_model_and_transforms("hf-hub:imageomics/bioclip")
bio_model = bio_model.to(device).eval()
bio_tokenizer = open_clip.get_tokenizer("hf-hub:imageomics/bioclip")
# Satellite patch encoder CLIP-L-336 per-patch)
sat_model: CLIPVisionPerPatchModel = (
CLIPVisionPerPatchModel.from_pretrained("derektan95/search-tta-sat")
.to(device)
.eval()
)
# Sound CLAP model
sound_model: ClapAudioModelWithProjection = (
ClapAudioModelWithProjection.from_pretrained("derektan95/search-tta-sound")
.to(device)
.eval()
)
sound_processor: ClapProcessor = ClapProcessor.from_pretrained("derektan95/search-tta-sound")
SAMPLE_RATE = 48000
logit_scale = torch.nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
logit_scale = logit_scale.exp()
blur_kernel = (5,5)
# ββββββββββββββββββββββββββ transforms (exact spec) βββββββββββββββββββ
img_transform = transforms.Compose(
[
transforms.Resize((256, 256)),
transforms.CenterCrop((224, 224)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
),
]
)
imo_transform = transforms.Compose(
[
transforms.Resize((336, 336)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
),
]
)
def get_audio_clap(path_to_audio,format="mp3",padding="repeatpad",truncation="fusion"):
track, sr = torchaudio.load(path_to_audio, format=format) # torchaudio.load(path_to_audio)
track = track.mean(axis=0)
track = torchaudio.functional.resample(track, orig_freq=sr, new_freq=SAMPLE_RATE)
output = sound_processor(audios=track, sampling_rate=SAMPLE_RATE, max_length_s=10, return_tensors="pt",padding=padding,truncation=truncation)
return output
# ββββββββββββββββββββββββββ helpers βββββββββββββββββββββββββββββββββββ
@torch.no_grad()
def _encode_ground(img_pil: Image.Image) -> torch.Tensor:
img = img_transform(img_pil).unsqueeze(0).to(device)
img_embeds, *_ = bio_model(img)
return img_embeds
@torch.no_grad()
def _encode_text(text: str) -> torch.Tensor:
toks = bio_tokenizer(text).to(device)
_, txt_embeds, _ = bio_model(text=toks)
return txt_embeds
@torch.no_grad()
def _encode_sat(img_pil: Image.Image) -> torch.Tensor:
imo = imo_transform(img_pil).unsqueeze(0).to(device)
imo_embeds = sat_model(imo)
return imo_embeds
@torch.no_grad()
def _encode_sound(sound) -> torch.Tensor:
processed_sound = get_audio_clap(sound)
for k in processed_sound.keys():
processed_sound[k] = processed_sound[k].to(device)
unnormalized_audio_embeds = sound_model(**processed_sound).audio_embeds
sound_embeds = torch.nn.functional.normalize(unnormalized_audio_embeds, dim=-1)
return sound_embeds
def _similarity_heatmap(query: torch.Tensor, patches: torch.Tensor) -> np.ndarray:
sims = torch.matmul(query, patches.t()) * logit_scale
sims = sims.t().sigmoid()
sims = sims[1:].squeeze() # drop CLS token
side = int(np.sqrt(len(sims)))
sims = sims.reshape(side, side)
return sims.cpu().detach().numpy()
def _array_to_pil(arr: np.ndarray) -> Image.Image:
"""
Render arr with viridis, automatically stretching its own minβmax to 0β1
so that the most-similar patches appear yellow.
"""
# Gausian Smoothing
if blur_kernel != (0,0):
arr = cv2.GaussianBlur(arr, blur_kernel, 0)
# --- contrast-stretch to local 0-1 range --------------------------
arr_min, arr_max = float(arr.min()), float(arr.max())
if arr_max - arr_min < 1e-6: # avoid /0 when the heat-map is flat
arr_scaled = np.zeros_like(arr)
else:
arr_scaled = (arr - arr_min) / (arr_max - arr_min)
# ------------------------------------------------------------------
fig, ax = plt.subplots(figsize=(2.6, 2.6), dpi=96)
ax.imshow(arr_scaled, cmap="viridis", vmin=0.0, vmax=1.0)
ax.axis("off")
buf = io.BytesIO()
plt.tight_layout(pad=0)
fig.savefig(buf, format="png", bbox_inches="tight", pad_inches=0)
plt.close(fig)
buf.seek(0)
return Image.open(buf)
# ββββββββββββββββββββββββββ main inference ββββββββββββββββββββββββββββ
# integration with ZeroGPU on hf
@spaces.GPU(duration=5)
def process(
sat_img: Image.Image,
taxonomy: str,
ground_img: Image.Image | None,
sound: torch.Tensor | None,
):
if sat_img is None:
return None, None
patches = _encode_sat(sat_img)
heat_ground, heat_text, heat_sound = None, None, None
if ground_img is not None:
q_img = _encode_ground(ground_img)
heat_ground = _array_to_pil(_similarity_heatmap(q_img, patches))
if taxonomy.strip():
q_txt = _encode_text(taxonomy.strip())
heat_text = _array_to_pil(_similarity_heatmap(q_txt, patches))
if sound is not None:
q_sound = _encode_sound(sound)
heat_sound = _array_to_pil(_similarity_heatmap(q_sound, patches))
return heat_ground, heat_text, heat_sound
# ββββββββββββββββββββββββββ Gradio UI βββββββββββββββββββββββββββββββββ
with gr.Blocks(title="Search-TTA", theme=gr.themes.Base()) as demo:
gr.Markdown(
"""
# Search-TTA: A Multimodal Test-Time Adaptation Framework for Visual Search in the Wild Demo
Click on any of the <b>examples below</b> and run the <b>multimodal inference demo</b>. Check out the <b>test-time adaptation feature</b> by switching to the previous tab above. <br>
If you encounter any errors, refresh the browser and rerun the demo, or try again the next day. We will improve this in the future. <br>
<a href="https://search-tta.github.io">Project Website</a>
"""
)
# with gr.Row():
# gr.Markdown(
# """
# <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
# <div>
# <h1>Search-TTA: A Multimodal Test-Time Adaptation Framework for Visual Search in the Wild</h1>
# <span></span>
# <h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\
# <a href="https://search-tta.github.io">Project Website</a>
# </h2>
# <span></span>
# <h2 style='font-weight: 450; font-size: 0.5rem; margin: 0rem'>[Work in Progress]</h2>
# </div>
# </div>
# """
# <h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>WACV 2025</h2>
# <h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\
# <a href="https://derektan95.github.io">Derek M. S. Tan</a>,
# <a href="https://chinchinati.github.io/">Shailesh</a>,
# <a href="https://www.linkedin.com/in/boyang-liu-nus">Boyang Liu</a>,
# <a href="https://www.linkedin.com/in/loki-silvres">Alok Raj</a>,
# <a href="https://www.linkedin.com/in/ang-qi-xuan-714347142">Qi Xuan Ang</a>,
# <a href="https://weihengdai.top">Weiheng Dai</a>,
# <a href="https://www.linkedin.com/in/tanishqduhan">Tanishq Duhan</a>,
# <a href="https://www.linkedin.com/in/jimmychiun">Jimmy Chiun</a>,
# <a href="https://www.yuhongcao.online/">Yuhong Cao</a>,
# <a href="https://www.cs.toronto.edu/~florian/">Florian Shkurti</a>,
# <a href="https://www.marmotlab.org/bio.html">Guillaume Sartoretti</a>
# </h2>
# <h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>National University of Singapore, University of Toronto, IIT-Dhanbad, Singapore Technologies Engineering</h2>
# )
with gr.Row(variant="panel"):
# LEFT COLUMN (satellite, taxonomy, run)
with gr.Column():
sat_input = gr.Image(
label="Satellite Image",
sources=["upload"],
type="pil",
height=320,
)
taxonomy_input = gr.Textbox(
label="Full Taxonomy Name (optional)",
placeholder="e.g. Animalia Chordata Mammalia Rodentia Sciuridae Marmota marmota",
)
# βββ NEW: sound input βββββββββββββββββββββββββββ
sound_input = gr.Audio(
label="Sound Input (optional)",
sources=["upload"], # or "microphone" / "url" as you prefer
type="filepath", # or "numpy" if you want raw arrays
)
run_btn = gr.Button("Run", variant="primary")
# RIGHT COLUMN (ground image + two heat-maps)
with gr.Column():
ground_input = gr.Image(
label="Ground-level Image (optional)",
sources=["upload"],
type="pil",
height=320,
)
gr.Markdown("### Heat-map Results")
with gr.Row():
# Separate label and image to avoid overlap
with gr.Column(scale=1, min_width=100):
gr.Markdown("**Ground Image Query**", elem_id="label-ground")
heat_ground_out = gr.Image(
show_label=False,
height=160,
# width=160,
)
with gr.Column(scale=1, min_width=100):
gr.Markdown("**Text Query**", elem_id="label-text")
heat_text_out = gr.Image(
show_label=False,
height=160,
# width=160,
)
with gr.Column(scale=1, min_width=100):
gr.Markdown("**Sound Query**", elem_id="label-sound")
heat_sound_out = gr.Image(
show_label=False,
height=160,
# width=160,
)
# βββ NEW: sound output βββββββββββββββββββββββββ
# sound_output = gr.Audio(
# label="Playback",
# )
# EXAMPLES
with gr.Row():
gr.Markdown("### In-Domain Taxonomy")
with gr.Row():
gr.Examples(
examples=[
[
"examples/Animalia_Chordata_Aves_Charadriiformes_Laridae_Larus_marinus/80645_39.76079_-74.10316.jpg",
"examples/Animalia_Chordata_Aves_Charadriiformes_Laridae_Larus_marinus/cc1ebaf9-899d-49f2-81c8-d452249a8087.jpg",
"Animalia Chordata Aves Charadriiformes Laridae Larus marinus",
"examples/Animalia_Chordata_Aves_Charadriiformes_Laridae_Larus_marinus/89758229.mp3"
],
[
"examples/Animalia_Chordata_Mammalia_Rodentia_Caviidae_Hydrochoerus_hydrochaeris/28871_-12.80255_-69.29999.jpg",
"examples/Animalia_Chordata_Mammalia_Rodentia_Caviidae_Hydrochoerus_hydrochaeris/1b8064f8-7deb-4b30-98cd-69da98ba6a3d.jpg",
"Animalia Chordata Mammalia Rodentia Caviidae Hydrochoerus hydrochaeris",
"examples/Animalia_Chordata_Mammalia_Rodentia_Caviidae_Hydrochoerus_hydrochaeris/166631961.mp3"
],
[
"examples/Animalia_Arthropoda_Malacostraca_Decapoda_Ocypodidae_Ocypode_quadrata/277303_38.72364_-75.07749.jpg",
"examples/Animalia_Arthropoda_Malacostraca_Decapoda_Ocypodidae_Ocypode_quadrata/0b9cc264-a2ba-44bd-8e41-0d01a6edd1e8.jpg",
"Animalia Arthropoda Malacostraca Decapoda Ocypodidae Ocypode quadrata",
"examples/Animalia_Arthropoda_Malacostraca_Decapoda_Ocypodidae_Ocypode_quadrata/12372063.mp3"
],
[
"examples/Animalia_Chordata_Mammalia_Rodentia_Sciuridae_Marmota_marmota/388246_45.49036_7.14796.jpg",
"examples/Animalia_Chordata_Mammalia_Rodentia_Sciuridae_Marmota_marmota/327e1f07-692b-4140-8a3e-bd098bc064ff.jpg",
"Animalia Chordata Mammalia Rodentia Sciuridae Marmota marmota",
"examples/Animalia_Chordata_Mammalia_Rodentia_Sciuridae_Marmota_marmota/59677071.mp3"
],
[
"examples/Animalia_Chordata_Reptilia_Squamata_Varanidae_Varanus_salvator/410613_5.35573_100.28948.jpg",
"examples/Animalia_Chordata_Reptilia_Squamata_Varanidae_Varanus_salvator/461d8e6c-0e66-4acc-8ecd-bfd9c218bc14.jpg",
"Animalia Chordata Reptilia Squamata Varanidae Varanus salvator",
None
],
],
inputs=[sat_input, ground_input, taxonomy_input, sound_input],
outputs=[heat_ground_out, heat_text_out, heat_sound_out],
fn=process,
cache_examples=False,
)
# EXAMPLES
with gr.Row():
gr.Markdown("### Out-Domain Taxonomy")
with gr.Row():
gr.Examples(
examples=[
[
"examples/Animalia_Chordata_Mammalia_Carnivora_Phocidae_Mirounga_angustirostris/27423_35.64005_-121.17595.jpg",
"examples/Animalia_Chordata_Mammalia_Carnivora_Phocidae_Mirounga_angustirostris/3aac526d-c921-452a-af6a-cb4f2f52e2c4.jpg",
"Animalia Chordata Mammalia Carnivora Phocidae Mirounga angustirostris",
"examples/Animalia_Chordata_Mammalia_Carnivora_Phocidae_Mirounga_angustirostris/3123948.mp3"
],
[
"examples/Animalia_Chordata_Mammalia_Carnivora_Canidae_Canis_aureus/1528408_13.00422_80.23033.jpg",
"examples/Animalia_Chordata_Mammalia_Carnivora_Canidae_Canis_aureus/37faabd2-a613-4461-b27e-82fe5955ecaf.jpg",
"Animalia Chordata Mammalia Carnivora Canidae Canis aureus",
"examples/Animalia_Chordata_Mammalia_Carnivora_Canidae_Canis_aureus/189318716.mp3"
],
[
"examples/Animalia_Chordata_Mammalia_Carnivora_Ursidae_Ursus_americanus/yosemite_v3_resized.png",
"examples/Animalia_Chordata_Mammalia_Carnivora_Ursidae_Ursus_americanus/248820933.jpeg",
"Animalia Chordata Mammalia Carnivora Ursidae Ursus americanus",
None
],
[
"examples/Animalia_Chordata_Mammalia_Carnivora_Canidae_Urocyon_littoralis/304160_34.0144_-119.54417.jpg",
"examples/Animalia_Chordata_Mammalia_Carnivora_Canidae_Urocyon_littoralis/0cbdfbf2-6cfe-4d61-9602-c949f24d0293.jpg",
"Animalia Chordata Mammalia Carnivora Canidae Urocyon littoralis",
None
],
],
inputs=[sat_input, ground_input, taxonomy_input, sound_input],
outputs=[heat_ground_out, heat_text_out, heat_sound_out],
fn=process,
cache_examples=False,
)
# CALLBACK
run_btn.click(
fn=process,
inputs=[sat_input, taxonomy_input, ground_input, sound_input],
outputs=[heat_ground_out, heat_text_out, heat_sound_out],
)
# Footer to point out to model and data from app page.
gr.Markdown(
"""
The satellite image CLIP encoder is fine-tuned using [Sentinel-2 Level 2A](https://docs.sentinel-hub.com/api/latest/data/sentinel-2-l2a/) satellite image and taxonomy images (with GPS locations) from [iNaturalist](https://inaturalist.org/). The sound CLIP encoder is fine-tuned with a subset of the same taxonomy images and their corresponding sounds from [iNaturalist](https://inaturalist.org/). Some of these iNaturalist data are also used in [Taxabind](https://arxiv.org/abs/2411.00683). Note that while some of the examples above result in poor probability distributions, they will be improved using our test-time adaptation framework during the search process.
"""
)
# LAUNCH
if __name__ == "__main__":
demo.queue(max_size=15)
demo.launch(share=True)
|