File size: 12,796 Bytes
3eebbc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Date    : 2020-10-21
# @Author  : Emily Wenger (ewenger@uchicago.edu)

import datetime
import time

import numpy as np
import tensorflow as tf
from fawkes.utils import preprocess, reverse_preprocess
from keras.utils import Progbar


class FawkesMaskGeneration:
    # if the attack is trying to mimic a target image or a neuron vector
    MIMIC_IMG = True
    # number of iterations to perform gradient descent
    MAX_ITERATIONS = 10000
    # larger values converge faster to less accurate results
    LEARNING_RATE = 1e-2
    # the initial constant c to pick as a first guess
    INITIAL_CONST = 1
    # pixel intensity range
    INTENSITY_RANGE = 'imagenet'
    # threshold for distance
    L_THRESHOLD = 0.03
    # whether keep the final result or the best result
    KEEP_FINAL = False
    # max_val of image
    MAX_VAL = 255
    MAXIMIZE = False
    IMAGE_SHAPE = (112, 112, 3)
    RATIO = 1.0
    LIMIT_DIST = False
    LOSS_TYPE = 'features'  # use features (original Fawkes) or gradients (Witches Brew) to run Fawkes?

    def __init__(self, bottleneck_model_ls, mimic_img=MIMIC_IMG,
                 batch_size=1, learning_rate=LEARNING_RATE,
                 max_iterations=MAX_ITERATIONS, initial_const=INITIAL_CONST,
                 intensity_range=INTENSITY_RANGE, l_threshold=L_THRESHOLD,
                 max_val=MAX_VAL, keep_final=KEEP_FINAL, maximize=MAXIMIZE, image_shape=IMAGE_SHAPE, verbose=1,
                 ratio=RATIO, limit_dist=LIMIT_DIST, loss_method=LOSS_TYPE, tanh_process=True,
                 save_last_on_failed=True):

        assert intensity_range in {'raw', 'imagenet', 'inception', 'mnist'}

        # constant used for tanh transformation to avoid corner cases

        self.it = 0
        self.tanh_constant = 2 - 1e-6
        self.save_last_on_failed = save_last_on_failed
        self.MIMIC_IMG = mimic_img
        self.LEARNING_RATE = learning_rate
        self.MAX_ITERATIONS = max_iterations
        self.initial_const = initial_const
        self.batch_size = batch_size
        self.intensity_range = intensity_range
        self.l_threshold = l_threshold
        self.max_val = max_val
        self.keep_final = keep_final
        self.verbose = verbose
        self.maximize = maximize
        self.learning_rate = learning_rate
        self.ratio = ratio
        self.limit_dist = limit_dist
        self.single_shape = list(image_shape)
        self.bottleneck_models = bottleneck_model_ls
        self.loss_method = loss_method
        self.tanh_process = tanh_process

    @staticmethod
    def resize_tensor(input_tensor, model_input_shape):
        if input_tensor.shape[1:] == model_input_shape or model_input_shape[1] is None:
            return input_tensor
        resized_tensor = tf.image.resize(input_tensor, model_input_shape[:2])
        return resized_tensor

    def preprocess_arctanh(self, imgs):
        """ Do tan preprocess """
        imgs = reverse_preprocess(imgs, self.intensity_range)
        imgs = imgs / 255.0
        imgs = imgs - 0.5
        imgs = imgs * self.tanh_constant
        tanh_imgs = np.arctanh(imgs)
        return tanh_imgs

    def reverse_arctanh(self, imgs):
        raw_img = (tf.tanh(imgs) / self.tanh_constant + 0.5) * 255
        return raw_img

    def input_space_process(self, img):
        if self.intensity_range == 'imagenet':
            mean = np.repeat([[[[103.939, 116.779, 123.68]]]], len(img), axis=0)
            raw_img = (img[..., ::-1] - mean)
        else:
            raw_img = img
        return raw_img

    def clipping(self, imgs):
        imgs = reverse_preprocess(imgs, self.intensity_range)
        imgs = np.clip(imgs, 0, self.max_val)
        imgs = preprocess(imgs, self.intensity_range)
        return imgs

    def calc_dissim(self, source_raw, source_mod_raw):
        msssim_split = tf.image.ssim(source_raw, source_mod_raw, max_val=255.0)
        dist_raw = (1.0 - tf.stack(msssim_split)) / 2.0
        dist = tf.maximum(dist_raw - self.l_threshold, 0.0)
        dist_raw_avg = tf.reduce_mean(dist_raw)
        dist_sum = tf.reduce_sum(dist)

        return dist, dist_raw, dist_sum, dist_raw_avg

    def calc_bottlesim(self, tape, source_raw, target_raw, original_raw):
        """ original Fawkes loss function. """
        bottlesim = 0.0
        bottlesim_sum = 0.0
        # make sure everything is the right size.
        model_input_shape = self.single_shape
        cur_aimg_input = self.resize_tensor(source_raw, model_input_shape)
        if target_raw is not None:
            cur_timg_input = self.resize_tensor(target_raw, model_input_shape)
        for bottleneck_model in self.bottleneck_models:
            if tape is not None:
                try:
                    tape.watch(bottleneck_model.model.variables)
                except AttributeError:
                    tape.watch(bottleneck_model.variables)
            # get the respective feature space reprs.
            bottleneck_a = bottleneck_model(cur_aimg_input)
            if self.maximize:
                bottleneck_s = bottleneck_model(original_raw)
                bottleneck_diff = bottleneck_a - bottleneck_s
                scale_factor = tf.sqrt(tf.reduce_sum(tf.square(bottleneck_s), axis=1))
            else:
                bottleneck_t = bottleneck_model(cur_timg_input)
                bottleneck_diff = bottleneck_t - bottleneck_a
                scale_factor = tf.sqrt(tf.reduce_sum(tf.square(bottleneck_t), axis=1))
            cur_bottlesim = tf.reduce_sum(tf.square(bottleneck_diff), axis=1)
            cur_bottlesim = cur_bottlesim / scale_factor
            bottlesim += cur_bottlesim
            bottlesim_sum += tf.reduce_sum(cur_bottlesim)
        return bottlesim, bottlesim_sum

    def compute_feature_loss(self, tape, aimg_raw, simg_raw, aimg_input, timg_input, simg_input):
        """ Compute input space + feature space loss.
        """
        input_space_loss, dist_raw, input_space_loss_sum, input_space_loss_raw_avg = self.calc_dissim(aimg_raw,
                                                                                                      simg_raw)
        feature_space_loss, feature_space_loss_sum = self.calc_bottlesim(tape, aimg_input, timg_input, simg_input)

        if self.maximize:
            loss = self.const * tf.square(input_space_loss) - feature_space_loss * self.const_diff
        else:
            if self.it < self.MAX_ITERATIONS:
                loss = self.const * tf.square(input_space_loss) + 1000 * feature_space_loss

        loss_sum = tf.reduce_sum(loss)
        return loss_sum, feature_space_loss, input_space_loss_raw_avg, dist_raw

    def compute(self, source_imgs, target_imgs=None):
        """ Main function that runs cloak generation. """
        start_time = time.time()
        adv_imgs = []
        for idx in range(0, len(source_imgs), self.batch_size):
            print('processing image %d at %s' % (idx + 1, datetime.datetime.now()))
            adv_img = self.compute_batch(source_imgs[idx:idx + self.batch_size],
                                         target_imgs[idx:idx + self.batch_size] if target_imgs is not None else None)
            adv_imgs.extend(adv_img)
        elapsed_time = time.time() - start_time
        print('protection cost %f s' % elapsed_time)
        return np.array(adv_imgs)

    def compute_batch(self, source_imgs, target_imgs=None, retry=True):
        """ TF2 method to generate the cloak. """
        # preprocess images.
        global progressbar
        nb_imgs = source_imgs.shape[0]

        # make sure source/target images are an array
        source_imgs = np.array(source_imgs, dtype=np.float32)
        if target_imgs is not None:
            target_imgs = np.array(target_imgs, dtype=np.float32)

        # metrics to test
        best_bottlesim = [0] * nb_imgs if self.maximize else [np.inf] * nb_imgs
        best_adv = np.zeros(source_imgs.shape)

        # convert to tanh-space
        simg_tanh = self.preprocess_arctanh(source_imgs)
        if target_imgs is not None:
            timg_tanh = self.preprocess_arctanh(target_imgs)
        self.modifier = tf.Variable(np.random.uniform(-1, 1, tuple([len(source_imgs)] + self.single_shape)) * 1e-4,
                                    dtype=tf.float32)

        # make the optimizer
        optimizer = tf.keras.optimizers.legacy.Adadelta(float(self.learning_rate))
        const_numpy = np.ones(len(source_imgs)) * self.initial_const
        self.const = tf.Variable(const_numpy, dtype=np.float32)

        const_diff_numpy = np.ones(len(source_imgs)) * 1.0
        self.const_diff = tf.Variable(const_diff_numpy, dtype=np.float32)

        # get the modifier
        if self.verbose == 0:
            progressbar = Progbar(
                self.MAX_ITERATIONS, width=30, verbose=1
            )
        # watch relevant variables.
        simg_tanh = tf.Variable(simg_tanh, dtype=np.float32)
        simg_raw = tf.Variable(source_imgs, dtype=np.float32)
        if target_imgs is not None:
            timg_raw = tf.Variable(timg_tanh, dtype=np.float32)
        # run the attack
        outside_list = np.ones(len(source_imgs))
        self.it = 0

        while self.it < self.MAX_ITERATIONS:

            self.it += 1
            with tf.GradientTape(persistent=True) as tape:
                tape.watch(self.modifier)
                tape.watch(simg_tanh)

                # Convert from tanh for DISSIM
                aimg_raw = self.reverse_arctanh(simg_tanh + self.modifier)

                actual_modifier = aimg_raw - simg_raw
                actual_modifier = tf.clip_by_value(actual_modifier, -15.0, 15.0)
                aimg_raw = simg_raw + actual_modifier

                simg_raw = self.reverse_arctanh(simg_tanh)

                # Convert further preprocess for bottleneck
                aimg_input = self.input_space_process(aimg_raw)
                if target_imgs is not None:
                    timg_input = self.input_space_process(timg_raw)
                else:
                    timg_input = None
                simg_input = self.input_space_process(simg_raw)

                # get the feature space loss.
                loss, internal_dist, input_dist_avg, dist_raw = self.compute_feature_loss(
                    tape, aimg_raw, simg_raw, aimg_input, timg_input, simg_input)

                # compute gradients
                grad = tape.gradient(loss, [self.modifier])
                if grad[0] is not None:
                    optimizer.apply_gradients(zip(grad, [self.modifier]))

            if self.it == 1:
                self.modifier = tf.Variable(self.modifier - tf.sign(grad[0]) * 0.01, dtype=tf.float32)

            for e, (input_dist, feature_d, mod_img) in enumerate(zip(dist_raw, internal_dist, aimg_input)):
                if e >= nb_imgs:
                    break
                input_dist = input_dist.numpy()
                feature_d = feature_d.numpy()

                if input_dist <= self.l_threshold * 0.9 and const_diff_numpy[e] <= 129:
                    const_diff_numpy[e] *= 2
                    if outside_list[e] == -1:
                        const_diff_numpy[e] = 1
                    outside_list[e] = 1
                elif input_dist >= self.l_threshold * 1.1 and const_diff_numpy[e] >= 1 / 129:
                    const_diff_numpy[e] /= 2

                    if outside_list[e] == 1:
                        const_diff_numpy[e] = 1
                    outside_list[e] = -1
                else:
                    const_diff_numpy[e] = 1.0
                    outside_list[e] = 0

                if input_dist <= self.l_threshold * 1.1 and (
                        (feature_d < best_bottlesim[e] and (not self.maximize)) or (
                        feature_d > best_bottlesim[e] and self.maximize)):
                    best_bottlesim[e] = feature_d
                    best_adv[e] = mod_img

            self.const_diff = tf.Variable(const_diff_numpy, dtype=np.float32)

            if self.verbose == 1:
                print("ITER {:0.2f}  Total Loss: {:.2f} {:0.4f} raw; diff: {:.4f}".format(self.it, loss, input_dist_avg,
                                                                                          np.mean(internal_dist)))

            if self.verbose == 0:
                progressbar.update(self.it)
        if self.verbose == 1:
            print("Final diff: {:.4f}".format(np.mean(best_bottlesim)))
        print("\n")

        if self.save_last_on_failed:
            for e, diff in enumerate(best_bottlesim):
                if diff < 0.3 and dist_raw[e] < 0.015 and internal_dist[e] > diff:
                    best_adv[e] = aimg_input[e]

        best_adv = self.clipping(best_adv[:nb_imgs])
        return best_adv