Spaces:
Sleeping
Sleeping
File size: 17,568 Bytes
aa651cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 |
# -*- coding: utf-8 -*-
"""
Created on Tue Oct 19 18:29:10 2021
@author: 2913452
TODO:
- height of athlete, optimal angle shot put
- note that biomech can influence
how much force an athlete can emit for each angle
-
"""
from abc import ABC, abstractmethod
from scipy.integrate import solve_ivp
from scipy.interpolate import interp1d
from .transforms import T_12, T_23, T_34, T_14, T_41, T_31
import matplotlib.pyplot as pl
from numpy import exp,matmul,pi,sqrt,arctan2,radians,degrees,sin,cos,array,concatenate,linspace,zeros_like,cross,zeros,argmin
from numpy.linalg import norm
from . import environment
import os
import yaml
T_END = 60
N_STEP = 200
def hit_ground(t, y, *args):
return y[2]
def stopped(t, y, *args):
U = norm(y[3:6])
return U - 1e-4
class Shot:
def __init__(self,t,x,v,att=None):
self.time = t
self.position = x
self.velocity = v
if att is not None:
self.attitude = att
class _Projectile(ABC):
def __init__(self):
pass
def _shoot(self, advance_function, y0, *args):
hit_ground.terminal = True
hit_ground.direction = -1
stopped.terminal = True
stopped.direction = -1
sol = solve_ivp(advance_function,[0,T_END],y0,
dense_output=True,args=args,
method='RK45',
events=(hit_ground,stopped))
t = linspace(0,sol.t[-1],N_STEP)
f = sol.sol(t)
pos = array([f[0],f[1],f[2]])
vel = array([f[3],f[4],f[5]])
if len(f) <= 6:
shot = Shot(t, pos, vel)
else:
att = array([f[6],f[7],f[8]])
shot = Shot(t, pos, vel, att)
return shot
@abstractmethod
def advance(self,t,vec,*args):
"""
:param float T: Thrust
:param float Q: Torque
:param float P: Power
:return: Right hand side of kinematic equations for a projectile
:rtype: array
"""
class _Particle(_Projectile):
def __init__(self):
super().__init__()
self.g = environment.g
def initialize_shot(self, **kwargs):
kwargs.setdefault('yaw', 0.0)
pitch = radians(kwargs["pitch"])
yaw = radians(kwargs["yaw"])
U = kwargs["speed"]
xy = cos(pitch)
u = U*xy*cos(yaw)
w = U*sin(pitch)
v = U*xy*sin(-yaw)
if "position" in kwargs:
x,y,z = kwargs["position"]
else:
x = 0.
y = 0.
z = 0.
y0 = array((x,y,z,u,v,w))
return y0
def shoot(self, **kwargs):
y0 = self.initialize_shot(**kwargs)
shot = self._shoot(self.advance, y0)
return shot
def gravity_force(self, x=None):
if x is None:
return array((0,0,environment.g))
else:
# Messy way to return g array...
f = zeros_like(x)
f[0,:] = 0
f[1,:] = 0
f[2,:] = environment.g
return f
def advance(self, t, vec, *args):
# x, y, z, u, v, w = vec
x = vec[0:3]
u = vec[3:6]
f = self.gravity_force()
return concatenate((u,f))
class _SphericalParticleAirResistance(_Particle):
def __init__(self, mass, diameter):
super().__init__()
self.mass = mass
self.diameter = diameter
self.radius = 0.5*diameter
self.area = 0.25*pi*diameter**2
self.volume = 4./3.*pi*self.radius**3
def air_resistance_force(self, U, Cd):
f = -0.5*environment.rho*self.area*Cd*norm(U)*U/self.mass
#f = -0.5*environment.rho*self.area*Cd*Umag*U/self.mass
return f
def advance(self, t, vec, *args):
x = vec[0:3]
u = vec[3:6]
Cd = self.drag_coefficient(norm(u))
f = self.air_resistance_force(u, Cd) \
+ self.gravity_force()
return concatenate((u,f))
def reynolds_number(self, velocity):
"""
Reynolds number, non-dimensional number giving the
ratio of inertial forces to viscous forces. Used
for calculating the drag coefficient.
:param float velocity: Velocity seen by particle
:return: Reynolds number
:rtype: float
"""
return environment.rho*velocity*self.diameter/environment.mu
def drag_coefficient(self, velocity):
"""
Drag coefficient for sphere, empirical curve fit
taken from:
F. A. Morrison, An Introduction to Fluid Mechanics, (Cambridge
University Press, New York, 2013). This correlation appears in
Figure 8.13 on page 625.
The full formula is:
.. math::
F = \\frac{2}{\\pi}\\cos^{-1}e^{-f} \\\\
f = \\frac{B}{2}\\frac{R-r}{r\\sin\\phi}
:param float velocity: Velocity seen by particle
:return: Drag coefficient
:rtype: float
"""
Re = self.reynolds_number(velocity)
if Re <= 0:
return 1e30
tmp1 = Re/5.0
tmp2 = Re/2.63e5
tmp3 = Re/1e6
Cd = 24.0/Re \
+ 2.6*tmp1/(1 + tmp1**1.52) \
+ 0.411*tmp2**-7.94/(1 + tmp2**-8) \
+ 0.25*tmp3/(1 + tmp3)
return Cd
class _SphericalParticleAirResistanceSpin(_SphericalParticleAirResistance):
def __init__(self, mass, diameter):
super().__init__(mass, diameter)
def lift_coefficient(self, Umag, omega):
# TODO - complex dependency on Re. For now,
# assume constant
return 0.9
def shoot(self, **kwargs):
y0 = self.initialize_shot(**kwargs)
spin = array((kwargs["spin"]))
shot = self._shoot(self.advance, y0, spin)
return shot
def spin_force(self,U,spin):
Umag = norm(U)
omega = norm(spin)
Cl = self.lift_coefficient(Umag, omega)
if U.ndim == 1:
f = Cl*pi*self.radius**3*environment.rho*cross(spin, U)/self.mass
else:
# Messy way to return spin array for post-processing
f = zeros_like(U)
for i in range(U.shape[1]):
f[:,i] = Cl*pi*self.radius**3*environment.rho*cross(spin, U[:,i])/self.mass
return f
def advance(self, t, vec, spin):
x = vec[0:3]
u = vec[3:6]
Cd = self.drag_coefficient(norm(u), norm(spin))
f = self.air_resistance_force(u, Cd) \
+ self.gravity_force() \
+ self.spin_force(u,spin)
return concatenate((u,f))
class ShotPutBall(_SphericalParticleAirResistance):
"""
Note that diameter can vary 110 mm to 130mm
and 95 mm to 110 mm
"""
def __init__(self, weight_class):
if weight_class == 'M':
mass = 7.26
diameter = 0.11
elif weight_class == 'F':
mass = 4.0
diameter = 0.095
super().__init__(mass, diameter)
class SoccerBall(_SphericalParticleAirResistanceSpin):
"""
Note that diameter can vary 110 mm to 130mm
and 95 mm to 110 mm
"""
def __init__(self, mass=0.430, diameter=0.22):
super(SoccerBall, self).__init__(mass, diameter)
def drag_coefficient(self, velocity, omega):
# Texture, sewing pattern and spin will alter
# the drag coefficient.
# Here, use correlation from
# Goff, J. E., & Carré, M. J. (2010). Soccer ball lift
# coefficients via trajectory analysis.
# European Journal of Physics, 31(4), 775.
vc = 12.19
vs = 1.309
S = omega*self.radius/velocity;
if S > 0.05 and velocity > vc:
Cd = 0.4127*S**0.3056;
else:
Cd = 0.155 + 0.346 / (1 + exp((velocity - vc)/vs))
return Cd
def lift_coefficient(self, Umag, omega):
# TODO - complex dependency on Re and spin, skin texture etc
return 0.9
class TableTennisBall(SoccerBall):
"""
"""
def __init__(self):
mass = 2.7e-3
diameter = 40e-3
super(TableTennisBall, self).__init__(mass, diameter)
class DiscGolfDisc(_Projectile):
def __init__(self, name, mass=0.175):
this_dir = os.path.dirname(os.path.abspath(__file__))
path = os.path.join(this_dir, 'discs', name + '.yaml')
self.name = name
with open(path, 'r') as f:
data = yaml.load(f, Loader=yaml.FullLoader)
self.diameter = data['diameter']
self.mass = mass
self.weight = environment.g*mass
self.area = pi*self.diameter**2/4.0
self.I_xy = mass*data['J_xy']
self.I_z = mass*data['J_z']
a = array(data['alpha'])
cl = array(data['Cl'])
cd = array(data['Cd'])
cm = array(data['Cm'])
self._alpha,self._Cl,self._Cd,self._Cm = self._flip(a,cl,cd,cm)
kind = 'linear'
self.Cl_func = interp1d(self._alpha, self._Cl, kind=kind)
self.Cd_func = interp1d(self._alpha, self._Cd, kind=kind)
self.Cm_func = interp1d(self._alpha, self._Cm, kind=kind)
def _flip(self,a,cl,cd,cm):
"""
Data given from -90 deg to 90 deg.
Expand to -180 to 180 using symmetry considerations.
"""
n = len(a)
idx = argmin(abs(a))
a2 = zeros(2*n)
cl2 = zeros(2*n)
cd2 = zeros(2*n)
cm2 = zeros(2*n)
a2[idx:idx+n] = a[:]
cl2[idx:idx+n] = cl[:]
cd2[idx:idx+n] = cd[:]
cm2[idx:idx+n] = cm[:]
for i in range(idx):
a2[i] = -(180 + a[idx-i])
cl2[i] = -cl[idx-i]
cd2[i] = cd[idx-i]
cm2[i] = -cm[idx-i]
for i in range(idx+n,2*n):
a2[i] = 180 - a[idx+n-i-2]
cl2[i] = -cl[idx+n-i-2]
cd2[i] = cd[idx+n-i-2]
cm2[i] = -cm[idx+n-i-2]
return a2,cl2,cd2,cm2
def _normalize_angle(self, alpha):
"""
Ensure that the angle fulfils :math:`-\\pi < \\alpha < \\pi`
:param float alpha: Angle in radians
:return: Normalized angle
:rtype: float
"""
return arctan2(sin(alpha), cos(alpha))
def Cd(self, alpha):
"""
Provide drag coefficent for a given angle of attack.
:param float alpha: Angle in radians
:return: Drag coefficient
:rtype: float
"""
# NB! The stored data uses degrees for the angle
return self.Cd_func(degrees(self._normalize_angle(alpha)))
def Cl(self, alpha):
"""
Provide drag coefficent for a given angle of attack.
:param float alpha: Angle in radians
:return: Drag coefficient
:rtype: float
"""
# NB! The stored data uses degrees for the angle
return self.Cl_func(degrees(self._normalize_angle(alpha)))
def Cm(self, alpha):
"""
Provide coefficent of moment for a given angle of attack.
:param float alpha: Angle in radians
:return: Coefficient of moment
:rtype: float
"""
# NB! The stored data uses degrees for the angle
return self.Cm_func(degrees(self._normalize_angle(alpha)))
def plot_coeffs(self, color='k'):
"""
Utility function to quickly explore disc coefficients.
:param string color: Matplotlib color key. Default value is k, i.e. black.
"""
pl.plot(self._alpha, self._Cl, 'C0-o',label='$C_L$')
pl.plot(self._alpha, self._Cd, 'C1-o',label='$C_D$')
pl.plot(self._alpha, 3*self._Cm, 'C2-o',label='$C_M$')
a = linspace(-pi,pi,200)
#pl.plot(degrees(a), self.Cl(a), 'C0-',label='$C_L$')
#pl.plot(degrees(a), self.Cd(a), 'C1-',label='$C_D$')
#pl.plot(degrees(a), 3*self.Cm(a), 'C2-',label='$C_M$')
pl.xlabel('Angle of attack ($^\circ$)')
pl.ylabel('Aerodynamic coefficients (-)')
pl.legend(loc='upper left')
ax = pl.gca()
ax2 = pl.gca().twinx()
ax2.set_ylabel("Aerodynamic efficiency, $C_L/C_D$")
pl.plot(self._alpha, self._Cl/self._Cd, 'C3-.',label='$C_L/C_D$')
ax2.legend(loc='upper right')
return ax,ax2
def empirical_spin(self, speed):
# Simple empirical formula for spin rate, based on curve-fitting
# data from:
# https://www.dgcoursereview.com/dgr/forums/viewtopic.php?f=2&t=7097
#omega = -0.257*speed**2 + 15.338*speed
# Alternatively, experiments indicate a linear relationship,
omega = 5.2*speed
return omega
def initialize_shot(self, **kwargs):
U = kwargs["speed"]
kwargs.setdefault('yaw', 0.0)
#kwargs.setdefault('omega', self.empirical_spin(U))
pitch = radians(kwargs["pitch"])
yaw = radians(kwargs["yaw"])
omega = kwargs["omega"]
# phi, theta
roll_angle = radians(kwargs["roll_angle"]) # phi
nose_angle = radians(kwargs["nose_angle"]) # theta
# psi, rotation around z irrelevant for starting position
# since the disc is symmetric
# Initialize position
if "position" in kwargs:
x,y,z = kwargs["position"]
else:
x = 0.
y = 0.
z = 0.
# Initialize velocity
xy = cos(pitch)
u = U*xy*cos(yaw)
v = U*xy*sin(-yaw)
w = U*sin(pitch)
# Initialize angles
attitude = array([roll_angle, nose_angle, 0])
# The initial orientation of the disc must also account for the
# angle of the throw itself, i.e. the launch angle.
attitude += matmul(T_12(attitude), array((0, pitch, 0)))
#attitude = matmul(T_23(yaw),attitude)
#attitude += matmul(T_12(attitude), array((0, pitch, 0)))
phi, theta, psi = attitude
y0 = array((x,y,z,u,v,w,phi,theta,psi))
return y0, omega
def shoot(self, **kwargs):
y0, omega = self.initialize_shot(**kwargs)
shot = self._shoot(self.advance, y0, omega)
return shot
def post_process(self, s, omega):
n = len(s.time)
alphas = zeros(n)
betas = zeros(n)
lifts = zeros(n)
drags = zeros(n)
moms = zeros(n)
rolls = zeros(n)
for i in range(n):
x = s.position[:,i]
u = s.velocity[:,i]
a = s.attitude[:,i]
alpha, beta, Fd, Fl, M, g4 = self.forces(x, u, a, omega)
alphas[i] = alpha
betas[i] = beta
lifts[i] = Fl
drags[i] = Fd
moms[i] = M
rolls[i] = -M/(omega*(self.I_xy - self.I_z))
arc_length = norm(s.position, axis=0)
return arc_length,degrees(alphas),degrees(betas),lifts,drags,moms,degrees(rolls)
def forces(self, x, u, a, omega):
# Velocity in body axes
urel = u - environment.wind_abl(x[2])
u2 = matmul(T_12(a), urel)
# Side slip angle is the angle between the x and y velocity
beta = -arctan2(u2[1], u2[0])
# Velocity in zero side slip axes
u3 = matmul(T_23(beta), u2)
# Angle of attack is the angle between
# vertical and horizontal velocity
alpha = -arctan2(u3[2], u3[0])
# Velocity in wind system, where forces are to be calculated
u4 = matmul(T_34(alpha), u3)
# Convert gravitational force from Earth to Wind axes
g = array((0, 0, self.mass*environment.g))
g4 = T_14(g, a, beta, alpha)
# Aerodynamic forces
q = 0.5*environment.rho*u4[0]**2
S = self.area
D = self.diameter
Fd = q*S*self.Cd(alpha)
Fl = q*S*self.Cl(alpha)
M = q*S*D*self.Cm(alpha)
return alpha, beta, Fd, Fl, M, g4
def advance(self, t, vec, omega):
x = vec[0:3]
u = vec[3:6]
a = vec[6:9]
alpha, beta, Fd, Fl, M, g4 = self.forces(x, u, a, omega)
m = self.mass
# Calculate accelerations
dudt = (-Fd + g4[0])/m
dvdt = g4[1]/m
dwdt = ( Fl + g4[2])/m
acc4 = array((dudt,dvdt,dwdt))
# Roll rate acts around x-axis (in axes 3: zero side slip axes)
dphidt = -M/(omega*(self.I_xy - self.I_z))
# Other angular rotations are ignored, assume zero wobble
angvel3 = array((dphidt, 0, 0))
acc1 = T_41(acc4, a, beta, alpha)
angvel1 = T_31(angvel3, a, beta)
return concatenate((u,acc1,angvel1))
|