File size: 34,493 Bytes
c94e693
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "b1b28232-b65d-41ce-88de-fd70b93a528d",
   "metadata": {},
   "source": [
    "# Imports"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "abb5186b-ee67-4e1e-882d-3d8d5b4575d4",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "import json\n",
    "from pathlib import Path\n",
    "import pickle\n",
    "from tqdm.auto import tqdm\n",
    "\n",
    "from haystack.nodes.preprocessor import PreProcessor"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "c4b82ea2-8b30-4c2e-99f0-9a30f2f1bfb7",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "/home/ec2-user/arabic-wiki\n"
     ]
    }
   ],
   "source": [
    "proj_dir = Path.cwd().parent\n",
    "print(proj_dir)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "76119e74-f601-436d-a253-63c5a19d1c83",
   "metadata": {},
   "source": [
    "# Config"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "f6f74545-54a7-4f41-9f02-96964e1417f0",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "files_in = list((proj_dir / 'data/consolidated').glob('*.ndjson'))\n",
    "folder_out = proj_dir / 'data/processed'\n",
    "folder_out_str = str(folder_out)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "509f41f9-a59f-4171-b61f-ae0cf756fc92",
   "metadata": {},
   "source": [
    "# Analysis"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "f0cbd1c9-3105-4940-85dc-c01ccaa217c7",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "with open(files_in[0], 'r') as f:\n",
    "    articles = [json.loads(line) for line in f]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "004aae7b-1a2f-4a0b-9450-5d80475258b1",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'content': 'الماء مادةٌ شفافةٌ عديمة اللون والرائحة، وهو المكو...',\n",
      " 'meta': {'id': '7',\n",
      "          'revid': '2080427',\n",
      "          'title': 'ماء',\n",
      "          'url': 'https://ar.wikipedia.org/wiki?curid=7'}}\n"
     ]
    }
   ],
   "source": [
    "from pprint import pprint\n",
    "article = articles[0].copy()\n",
    "article['content'] = article['content'][:50] + '...'\n",
    "pprint(article)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6a643cf2-abce-48a9-b4e0-478bcbee28c3",
   "metadata": {},
   "source": [
    "# Preprocessing"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a8f9630e-447e-423e-9f6c-e1dbc654f2dd",
   "metadata": {},
   "source": [
    "Its important to choose good pre-processing options. \n",
    "\n",
    "Clean whitespace helps each stage of RAG. It adds noise to the embeddings, and wastes space when we prompt with it.\n",
    "\n",
    "I chose to split by word as it would be tedious to tokenize here, and that doesnt scale well. The context length for most embedding models ends up being 512 tokens. We saw this within a good z-score is ~225 token.\n",
    "\n",
    "I like to respect the sentence boundary, thats why I gave a ~50 word buffer."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "18807aea-24e4-4d74-bf10-55b24f3cb52c",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "pp = PreProcessor(clean_whitespace = True,\n",
    "             clean_header_footer = False,\n",
    "             clean_empty_lines = True,\n",
    "             remove_substrings = None,\n",
    "             split_by='word',\n",
    "             split_length = 225,\n",
    "             split_overlap = 50,\n",
    "             split_respect_sentence_boundary = True,\n",
    "             tokenizer_model_folder = None,\n",
    "             id_hash_keys = None,\n",
    "             progress_bar = False,\n",
    "             add_page_number = False,\n",
    "             max_chars_check = 10_000)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3c1ab000-6574-485e-87f6-cc210f6e8a61",
   "metadata": {},
   "source": [
    "When we break a wikipedia article up, we lose some of the context. The local context is somewhat preserved by the `split_overlap`. Im trying to preserve the global context by adding a prefix that has the article's title.\n",
    "\n",
    "You could enhance this with the summary as well. This is mostly to help the retrieval step of RAG. Note that the way Im doing it alters some of `haystack`'s features like the hash and the lengths, but those arent too necessary. \n",
    "\n",
    "A more advanced way for many business applications would be to summarize the document and add that as a prefix for sub-documents.\n",
    "\n",
    "One last thing to note, is that it would be prudent (in some use-cases) to preserve the original document without the summary to give to the reader (retrieve with the summary but prompt without), but since this is a demo use-case I wont be doing that."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "63871bdd-0369-4dd7-a65e-ccba29baed44",
   "metadata": {},
   "outputs": [],
   "source": [
    "with open(files_in[0], 'r', encoding='utf-8') as f:\n",
    "    articles = [json.loads(line) for line in f]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "5c3b48b7-3c0f-41ba-a423-b716649efcaa",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "We found one or more sentences whose word count is higher than the split length.\n",
      "Document e3e2bf8b3399979cb16219b175041b4d is 11336 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
      "Document 91ad1d1a24e93abacabd5a5478a96977 is 14251 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
      "Document 1625c431c0fcfaf81c13e0da59071a81 is 13395 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
      "Document 790d3b2d94a68cbec6d77f3c15d0e679 is 13484 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
      "Document e2dcf80a1f9dfc118aed059255f9b90b is 13217 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "CPU times: user 3min 31s, sys: 95.1 ms, total: 3min 31s\n",
      "Wall time: 3min 31s\n"
     ]
    }
   ],
   "source": [
    "%%time\n",
    "documents = pp.process(articles)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "de6e1690-131a-41d1-a473-c908c2e40939",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Document 91ad1d1a24e93abacabd5a5478a96977 is 14251 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
      "Document e3e2bf8b3399979cb16219b175041b4d is 11336 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
      "Document 1625c431c0fcfaf81c13e0da59071a81 is 13395 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
      "Document 790d3b2d94a68cbec6d77f3c15d0e679 is 13484 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
      "Document e2dcf80a1f9dfc118aed059255f9b90b is 13217 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "CPU times: user 6.86 s, sys: 1.31 s, total: 8.16 s\n",
      "Wall time: 1min 33s\n"
     ]
    }
   ],
   "source": [
    "%%time\n",
    "import os\n",
    "import concurrent.futures\n",
    "\n",
    "def parallel_preprocessing(articles):\n",
    "    # Utility function to divide the articles into smaller chunks\n",
    "    def chunkify(lst, n):\n",
    "        \"\"\"Yield successive n-sized chunks from lst.\"\"\"\n",
    "        for i in range(0, len(lst), n):\n",
    "            yield lst[i:i + n]\n",
    "\n",
    "    # Size of each chunk. Adjust based on your needs.\n",
    "    CHUNK_SIZE = 10_000  \n",
    "    article_chunks = list(chunkify(articles, CHUNK_SIZE))\n",
    "\n",
    "    # Number of processes to run in parallel.\n",
    "    # Use all available CPUs, but you can reduce the number if you wish to leave some CPUs free.\n",
    "    NUM_PROCESSES = os.cpu_count()  \n",
    "\n",
    "    with concurrent.futures.ProcessPoolExecutor(max_workers=NUM_PROCESSES) as executor:\n",
    "        documents_list = list(executor.map(pp.process, article_chunks))\n",
    "\n",
    "    # Flatten the documents_list to get a single list of documents\n",
    "    documents = [doc for sublist in documents_list for doc in sublist]\n",
    "    return documents\n",
    "\n",
    "documents = parallel_preprocessing(articles)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "dab1658a-79a7-40f2-9a8c-1798e0d124bf",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "a4d4ade8158144c6a06f072b550157c3",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/23 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Document 91ad1d1a24e93abacabd5a5478a96977 is 14251 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
      "Document e3e2bf8b3399979cb16219b175041b4d is 11336 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
      "Document 1625c431c0fcfaf81c13e0da59071a81 is 13395 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
      "Document 790d3b2d94a68cbec6d77f3c15d0e679 is 13484 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
      "Document e2dcf80a1f9dfc118aed059255f9b90b is 13217 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "bcb8fe6999ec408f99ef25c96c85c7b3",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/243068 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Document 2693d73124e824fb45633e34189a6226 is 14375 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "6ac231651a214181be49584511c97fe9",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/104065 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "c43b5ac1f3b84cac8f2715c5dcf21fb8",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/123154 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "a1b8201fc0ba44cf9ac938556c7effc8",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/135965 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "58ce68b1b5044b0eb1c457495159cb6d",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/99138 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "b80a37f6986e478d85397f7295b67079",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/83678 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "8197d71a396e47588699f22e44c843af",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/30573 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "39024c19258b41c4bcd7b6e5c0617d54",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/78957 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "aa26a27b522448b3bc2808f8ad650a28",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/86327 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "3aae87d4a40d4e9e937646f02c969bb2",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/83111 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "16038478b51a422d8ed7d597c9812999",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/92664 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "0b9ea31fc970402f8368b4be64d91546",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/66404 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "710bf094621c4472bc6d3973619627df",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/62844 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "0bae815b7b7448978fd042b6381b63ba",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/59349 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "483c99d5547a4bedb10802f9bbe414d3",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/52554 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Document c55a744420239d9865b23f9ff7ab37cc is 23179 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
      "Document 991fef35ead593c41f1dc73224ed7799 is 13179 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "34288f7c2437440ab07134116a6f5bf2",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/34240 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "c6b95ccc5799488980af6f73ab564c8b",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/35933 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Document c4ae5d66606dcc644293946f8f5c7cab is 10612 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "c6794c5150274e5cb2a09c52bfcf4c1a",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/64575 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "5aaf9358178d4daf9169a14cd71aa20f",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/94244 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Document 1d1357a32c6cd115525ceb0590e6d67d is 11314 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
      "Document eca1c79de6ca898903e5db0a44a54803 is 24659 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
      "Document 8a59ff0086cc7772046f54a065566ff9 is 14659 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "102f3b5a0c5e46f69742b9f41cc79928",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/124472 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "3e4803f9fc3d405eac97a64489c0d7e0",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/121849 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "d2b4c133d207446c96b4e576aac15bf7",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/147110 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "1cbd39af41ef4b20a8bc1bea7fe8186f",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/70322 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "CPU times: user 2min 21s, sys: 20.1 s, total: 2min 41s\n",
      "Wall time: 13min 36s\n"
     ]
    }
   ],
   "source": [
    "%%time\n",
    "for file_in in tqdm(files_in):\n",
    "    # Load articles\n",
    "    with open(file_in, 'r', encoding='utf-8') as f:\n",
    "        articles = [json.loads(line) for line in f]\n",
    "        \n",
    "    # Preprocess articles\n",
    "    documents = parallel_preprocessing(articles)\n",
    "    \n",
    "    # Prefix each document's content\n",
    "    for document in tqdm(documents):\n",
    "        if document.meta['_split_id'] != 0:\n",
    "            document.content = f'عنوان: {document.meta[\"title\"]}. ' + document.content\n",
    "            \n",
    "    processed_articles = [document.to_dict() for document in documents]\n",
    "    with open(folder_out/file_in.name, 'w', encoding='utf-8') as f:\n",
    "        for article in processed_articles:\n",
    "            json_str = json.dumps(article, ensure_ascii=False)\n",
    "            f.write(json_str + '\\n')\n",
    "        "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "72c1849c-1f4d-411f-b74b-6208b1e48217",
   "metadata": {},
   "source": [
    "## Pre-processing Examples"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "02c1c6c8-6283-49a8-9d29-c355f1b08540",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<Document: {'content': 'عشاء كارين هو من سلسلة مطاعم استرالية يهدف عمداً عن تجربة تناول طعام غير سارَة ويتم توجيه الموظفين لإهانة العملاء طوال وجباتهم.\\nاقتبس اسم المطعم من المصطلح العامي على الإنترنت (كارين) والذي يستخدم لوصف امرأة بيضاء مسنة وقحة بشكل نمطي.\\nتاريخ المطعم.\\nتم إنشاء السلسلة في أستراليا (سيدني) في عام 2021 من قبل إيدين ليفن وجيمس فاريل. المطعم ذو طابع خاص يعتمد على خدمة تجربة طعام غير سارة حيث يدفع العملاء للموظفين لإهانتهم وكان من المفترض ان يكون المطعم مطعماً منبثقاً لمدة ستة أشهر في وورلد سكوير.\\nاثارت فكرة المطعم في البداية ردات فعل متغايرة مما أثار الخوف بشأن ما إذا كانت الإهانات المتبادلة من الممكن ان تعرض الموظفين لسوء المعاملة من قبل العملاء.\\nاسم (كارين) هو إشارة إلى الإسم المستخدم في الميمات (النكت التي تنشهر بسرعة في مواقع التواصل) لوصف امرأة بيضاء في منتصف العمر ووقحة بشكل نمطي.\\nيطلب من الموظفين ارتداء شخصية وقحة والسخرية من العملاء بشكل هزلي اثناء تناول وجباتهم ومن المتوقع ان يعيد العملاء هذا السلوك من خلال التصرف بوقاحة تجاه الموظفين ومع ذلك يُحظر على العملاء والموظفين استخدام الإهانات العنصرية أو التحيز الجنسي أو رهاب المثلية الجنسية.\\nتتضمن العديد من هذه التبادلات لغة نابية ويجب ان يكون برفقة الاشخاص اللذين يقلون عن 16 عاماََ بالغين.\\nكما يمكن لمالكي بطاقة هوية تظهر ان اسمهم كارين الحصول على مشروب مجاني.\\n', 'content_type': 'text', 'score': None, 'meta': {'id': '8974231', 'revid': '593870', 'url': 'https://ar.wikipedia.org/wiki?curid=8974231', 'title': 'مطعم عشاء كارين', '_split_id': 0, '_split_overlap': [{'doc_id': '288196225044b53e6ff86f2485257a0a', 'range': (790, 1225)}]}, 'id_hash_keys': ['content'], 'embedding': None, 'id': '1af84f3b4cc6a9f1018f2f80b4fd3ba7'}>"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "documents[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "b34890bf-9dba-459a-9b0d-aa4b5929cbe8",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<Document: {'content': 'عنوان: مطعم عشاء كارين. يطلب من الموظفين ارتداء شخصية وقحة والسخرية من العملاء بشكل هزلي اثناء تناول وجباتهم ومن المتوقع ان يعيد العملاء هذا السلوك من خلال التصرف بوقاحة تجاه الموظفين ومع ذلك يُحظر على العملاء والموظفين استخدام الإهانات العنصرية أو التحيز الجنسي أو رهاب المثلية الجنسية.\\nتتضمن العديد من هذه التبادلات لغة نابية ويجب ان يكون برفقة الاشخاص اللذين يقلون عن 16 عاماََ بالغين.\\nكما يمكن لمالكي بطاقة هوية تظهر ان اسمهم كارين الحصول على مشروب مجاني.\\nيرتكز المطعم علو وجبات العشاء الأمريكية في خمسينات القرن الماضي وتتميز القائمة بالهامبرغر وأجنحة الدجاج.\\nأصبح محتوى شائع لوسائل التواصل الإجتماعي خصوصاً على منصة (تيك توك) حيث نشر العملاء مقاطع فيديو لتفاعلاتهم مع الموظفين.\\nفتحت السلسلة في مواقع في المملكة المتحدة والولايات المتحدة ونيوزيلندا.\\nفي شهر أغسطس سنة 2022 اثار المطعم جدلاً بعد ان انتشر مقطع يُظهر فيه أحد موظفي فريق العمل في منطقة بريزبين يتصرف بشكل غير لائق على منصة تيك توك حيث القى تعليقات غير لائقة موجهة إلى زبونة قاصر ووالدها الذي كان يشاركها الطعام بإتهامه انه يمارس الرذيلة مع الأطفال، فقام المتحدث باسم السلسلة بالرد بإنهم اصيبو بخيبة أمل بسبب السلوك وأن الحادث يتعارض مع إرشاداتهم.', 'content_type': 'text', 'score': None, 'meta': {'id': '8974231', 'revid': '593870', 'url': 'https://ar.wikipedia.org/wiki?curid=8974231', 'title': 'مطعم عشاء كارين', '_split_id': 1, '_split_overlap': [{'doc_id': '1af84f3b4cc6a9f1018f2f80b4fd3ba7', 'range': (0, 435)}]}, 'id_hash_keys': ['content'], 'embedding': None, 'id': '288196225044b53e6ff86f2485257a0a'}>"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "documents[1]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "e6f50c27-a486-47e9-ba60-d567f5e530db",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<Document: {'content': 'نيكولاي فليفا والمعروف أيضًا باسم نيكو فليفا (1840 - 4 أغسطس عام 1920) هو سياسي وصحفي سياسي ومحامي أفلاقي ومن ثم روماني. اشتهر بانخراطه في المجريات السياسية ونزعته الوطنية الصريحة التي كادت تصل إلى حد الديماغوجية. اختبر كافة الصيغ السياسية التي يسمح بها نظام الحزبين في رومانيا. دام حضوره على الساحة العامة عقودًا من الزمن، شغل خلالها مقعدًا في جمعية النواب وتولى منصب عمدة مدينة بوخارست خلال الفترة الممتدة من عام 1884 حتى عام 1886.\\nباشر فليفا مسيرته السياسية مع الحزب الليبرالي الوطني الذي ساعد على تأسيسه وتمثيله أمام القضاء، ولكنه اتجه في ما بعد إلى معارضة احتكار الحزب للسلطة. حاول إنشاء حزب ثالث ودخل في مفاوضات من أجل اعتماد برامج سياسية مشتركة خاصة بقوى المعارضة المختلفة ومن بينها حزب المحافظين وجمعية جونيما في ظل الإدارات الليبرالية الوطنية المتعاقبة. ذاع صيته عندما تورط في فضيحتين كبيرتين خلال ثمانينيات القرن التاسع عشر حين أدى استهزائه بسلطة الحزب الليبرالي الوطني إلى اندلاع معارك في الشوارع ووقوع حادثتي إطلاق النار منفصلتين. اعتُبرت الجماعات الموالية لفليفا الصوت الرائد المعبر عن سخط الطبقة الوسطى وقتذاك، وشكلت إحدى التيارات التي دفعت باتجاه تبني حق الاقتراع العام للذكور.\\nعاد فليفا إلى المعسكر الليبرالي الوطني بعد منعه من تولي حقائب وزارية ريادية في الحكومات المحافظة، وأصبح وزيرًا للشؤون الداخلية خلال الفترة من عام 1895 حتى عام 1896. ', 'content_type': 'text', 'score': None, 'meta': {'id': '9044009', 'revid': '1673186', 'url': 'https://ar.wikipedia.org/wiki?curid=9044009', 'title': 'نيكولاي فليفا', '_split_id': 0, '_split_overlap': [{'doc_id': '188181b1026773d720383c7e7307b241', 'range': (943, 1257)}]}, 'id_hash_keys': ['content'], 'embedding': None, 'id': 'af5cda4722fa2a961bef66de8a6b3e17'}>"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "documents[10102]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "5485cc27-3d3f-4b96-8884-accf5324da2d",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "2094596\n"
     ]
    }
   ],
   "source": [
    "!cat \"$folder_out_str\"/*.ndjson | wc -l"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c5833dba-1bf6-48aa-be6f-0d70c71e54aa",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}