File size: 12,913 Bytes
b6f3637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import matplotlib.pyplot as plt
import mediapipe as mp
import gradio as gr
import numpy as np
import torch
from torch import nn
import cv2 as cv

mp_drawing = mp.solutions.drawing_utils
mp_holistic = mp.solutions.holistic
frame_size = (350, 200)
NUM_FRAMES = 30

device = "cpu"
unique_symbols = [' ', '!', '(', ')', ',', '-', '0', '1', '2', '4', '5', '6', '7', ':', ';', '?', 'D', 'M', 'a', 'd',
                  'k', 'l', 'n', 'o', 's', 'no_event', 'Ё', 'А', 'Б', 'В', 'Г', 'Д', 'Е', 'Ж', 'З', 'И', 'Й', 'К', 'Л',
                  'М', 'Н', 'О', 'П', 'Р', 'С', 'Т', 'У', 'Ф', 'Х', 'Ц', 'Ч', 'Ш', 'Щ', 'Ъ', 'Ы', 'Ь', 'Э', 'Ю', 'Я',
                  'а', 'б', 'в', 'г', 'д', 'е', 'ж', 'з', 'и', 'й', 'к', 'л', 'м', 'н', 'о', 'п', 'р', 'с', 'т', 'у',
                  'ф', 'х', 'ц', 'ч', 'ш', 'щ', 'ъ', 'ы', 'ь', 'э', 'ю', 'я', 'ё', "#", "<", ">"]
label2idx = {unique_symbols[i]: i for i in range(len(unique_symbols))}
idx2label = {i: unique_symbols[i] for i in range(len(unique_symbols))}
bos_token = "<"
eos_token = ">"
pad_token = "#"


class TokenEmbedding(nn.Module):
    def __init__(self, num_vocab=1000, maxlen=100, num_hid=64):
        super().__init__()
        self.emb = nn.Embedding(num_vocab, num_hid)
        self.pos_emb = nn.Embedding(maxlen, num_hid)

    def forward(self, x):
        maxlen = x.size()[-1]
        x = self.emb(x)
        positions = torch.arange(start=0, end=maxlen).to(device)
        positions = self.pos_emb(positions)
        return x + positions


class LandmarkEmbedding(nn.Module):
    def __init__(self, in_ch, num_hid=64):
        super().__init__()
        self.emb = nn.Sequential(
            nn.Conv1d(in_channels=in_ch, out_channels=num_hid, kernel_size=11, padding="same"),
            nn.ReLU(),
            nn.Conv1d(in_channels=num_hid, out_channels=num_hid, kernel_size=11, padding="same"),
            nn.ReLU(),
            nn.Conv1d(in_channels=num_hid, out_channels=num_hid, kernel_size=11, padding="same"),
            nn.ReLU()
        )

    def forward(self, x):
        x = x.permute(0, 2, 1)
        x = self.emb(x)
        x = x.permute(0, 2, 1)
        return x


class TransformerEncoder(nn.Module):
    def __init__(self, embed_dim, num_heads, feed_forward_dim, rate=0.1):
        super().__init__()
        self.att = nn.MultiheadAttention(num_heads=num_heads, embed_dim=embed_dim, batch_first=True)
        self.ffn = nn.Sequential(
            nn.Linear(in_features=embed_dim, out_features=feed_forward_dim),
            nn.ReLU(),
            nn.Linear(in_features=feed_forward_dim, out_features=embed_dim)
        )
        self.layernorm1 = nn.LayerNorm(normalized_shape=embed_dim, eps=1e-6)
        self.layernorm2 = nn.LayerNorm(normalized_shape=embed_dim, eps=1e-6)
        self.dropout1 = nn.Dropout(rate)
        self.dropout2 = nn.Dropout(rate)

    def forward(self, inputs):
        attn_output = self.att(inputs, inputs, inputs)[0]
        attn_output = self.dropout1(attn_output)
        out1 = self.layernorm1(inputs + attn_output)
        ffn_output = self.ffn(out1)
        ffn_output = self.dropout2(ffn_output)
        return self.layernorm2(out1 + ffn_output)


class TransformerDecoder(nn.Module):
    def __init__(self, embed_dim, num_heads, feed_forward_dim, dropout_rate=0.1):
        super().__init__()
        self.num_heads = num_heads
        self.layernorm1 = nn.LayerNorm(normalized_shape=embed_dim, eps=1e-6)
        self.layernorm2 = nn.LayerNorm(normalized_shape=embed_dim, eps=1e-6)
        self.layernorm3 = nn.LayerNorm(normalized_shape=embed_dim, eps=1e-6)
        self.self_att = nn.MultiheadAttention(num_heads=num_heads, embed_dim=embed_dim, batch_first=True)
        self.enc_att = nn.MultiheadAttention(num_heads=num_heads, embed_dim=embed_dim, batch_first=True)
        self.self_dropout = nn.Dropout(0.5)
        self.enc_dropout = nn.Dropout(0.1)
        self.ffn_dropout = nn.Dropout(0.1)
        self.ffn = nn.Sequential(
            nn.Linear(in_features=embed_dim, out_features=feed_forward_dim),
            nn.ReLU(),
            nn.Linear(in_features=feed_forward_dim, out_features=embed_dim)
        )

    def causal_attention_mask(self, batch_size, n_dest, n_src, dtype):
        """Masks the upper half of the dot product matrix in self attention.

        This prevents flow of information from future tokens to current token.
        1's in the lower triangle, counting from the lower right corner.
        """
        i = torch.arange(start=0, end=n_dest)[:, None]
        j = torch.arange(start=0, end=n_src)
        m = i >= j - n_src + n_dest
        mask = m.type(dtype)
        mask = torch.reshape(mask, [1, n_dest, n_src])
        batch_size = torch.LongTensor([batch_size])
        mult = torch.cat((batch_size * self.num_heads, torch.ones(1, 2).type(torch.int32).squeeze(0)), axis=0)
        mult = tuple(mult.detach().cpu().numpy())
        return torch.tile(mask, mult).to(device)

    def forward(self, enc_out, target):
        input_shape = target.size()
        batch_size = input_shape[0]
        seq_len = input_shape[1]
        causal_mask = self.causal_attention_mask(batch_size, seq_len, seq_len, torch.bool)
        target_att = self.self_att(target, target, target, is_causal=True)[0]
        self_dropout = self.self_dropout(target_att)
        target_norm = self.layernorm1(target + self_dropout)
        enc_out = self.enc_att(target_norm, enc_out, enc_out)[0]
        enc_out_norm = self.layernorm2(self.enc_dropout(enc_out) + target_norm)
        ffn_out = self.ffn(enc_out_norm)
        ffn_out_norm = self.layernorm3(enc_out_norm + self.ffn_dropout(ffn_out))
        return ffn_out_norm


class Transformer(nn.Module):
    def __init__(
            self,
            num_hid=64,
            num_head=2,
            num_feed_forward=128,
            target_maxlen=100,
            num_layers_enc=4,
            num_layers_dec=1,
            num_classes=10,
            in_ch=126
    ):
        super().__init__()
        self.num_layers_enc = num_layers_enc
        self.num_layers_dec = num_layers_dec
        self.target_maxlen = target_maxlen
        self.num_classes = num_classes

        self.enc_input = LandmarkEmbedding(in_ch=in_ch, num_hid=num_hid)
        self.dec_input = TokenEmbedding(
            num_vocab=num_classes, maxlen=target_maxlen, num_hid=num_hid
        )

        list_encoder = [self.enc_input] + [
            TransformerEncoder(num_hid, num_head, num_feed_forward)
            for _ in range(num_layers_enc)
        ]
        self.encoder = nn.Sequential(*list_encoder)

        for i in range(num_layers_dec):
            setattr(
                self,
                f"dec_layer_{i}",
                TransformerDecoder(num_hid, num_head, num_feed_forward),
            )

        self.classifier = nn.Linear(in_features=num_hid, out_features=num_classes)

    def decode(self, enc_out, target):
        y = self.dec_input(target)
        for i in range(self.num_layers_dec):
            y = getattr(self, f"dec_layer_{i}")(enc_out, y)
        return y

    def forward(self, source, target):
        x = self.encoder(source)
        y = self.decode(x, target)
        y = self.classifier(y)
        return y

    def generate(self, source, target_start_token_idx):
        """Performs inference over one batch of inputs using greedy decoding."""
        bs = source.size()[0]
        enc = self.encoder(source)
        dec_input = torch.ones((bs, 1), dtype=torch.int32) * target_start_token_idx
        dec_input = dec_input.to(device)
        dec_logits = []
        for i in range(self.target_maxlen - 1):
            dec_out = self.decode(enc, dec_input)
            logits = self.classifier(dec_out)
            logits = torch.argmax(logits, dim=-1).type(torch.int32)
            # last_logit = tf.expand_dims(logits[:, -1], axis=-1)
            last_logit = logits[:, -1].unsqueeze(0)
            dec_logits.append(last_logit)
            dec_input = torch.concat([dec_input, last_logit], axis=-1)
        dec_input = dec_input.squeeze(0).cpu()
        return dec_input


model = torch.load("weights.pt", map_location=torch.device('cpu'))
model.eval()


def predict(inp):
    x = torch.from_numpy(inp).to(device)

    enc_out = model.generate(x.unsqueeze(0), label2idx[bos_token]).numpy()
    res1 = ""
    for p in enc_out:
        res1 += idx2label[p]
        if p == label2idx[eos_token]:
            break
    print(f"prediction: {res1}\n")


def mediapipe_detection(image, model, show_landmarks):
    image = cv.cvtColor(image, cv.COLOR_BGR2RGB)  # COLOR CONVERSION BGR 2 RGB
    image = cv.flip(image, 1)
    image.flags.writeable = False  # Image is no longer writeable
    results = model.process(image)  # Make prediction
    if show_landmarks:
        image.flags.writeable = True  # Image is now writeable
        image = cv.cvtColor(image, cv.COLOR_RGB2BGR)  # COLOR COVERSION RGB 2 BGR
    return image, results


def classify_image(inp):
    cap = cv.VideoCapture(inp)
    landmark_list = []
    frame_counter = 0
    with mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5) as holistic:
        while cap.isOpened():
            ret, frame = cap.read()

            if not ret:
                break

            frame = cv.resize(frame, frame_size)
            show_landmarks = False  # FIX ME
            image, results = mediapipe_detection(frame, holistic, show_landmarks)

            # pose
            try:
                pose = results.pose_landmarks.landmark
                pose_mat = list([landmark.x, landmark.y, landmark.z] for landmark in pose[11:17])

                mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_holistic.POSE_CONNECTIONS,
                                          mp_drawing.DrawingSpec(color=(245, 117, 66), thickness=1, circle_radius=2),
                                          mp_drawing.DrawingSpec(color=(245, 66, 230), thickness=1, circle_radius=1)
                                          )
            except:
                pose_mat = [[0, 0, 0]] * 6
            # print(pose_show)

            # left hand
            try:
                left = results.left_hand_landmarks.landmark
                left_mat = list([landmark.x, landmark.y, landmark.z] for landmark in left)

                if show_landmarks:
                    mp_drawing.draw_landmarks(image, results.left_hand_landmarks, mp_holistic.HAND_CONNECTIONS,
                                              mp_drawing.DrawingSpec(color=(121, 22, 76), thickness=1, circle_radius=2),
                                              mp_drawing.DrawingSpec(color=(121, 44, 250), thickness=1, circle_radius=1)
                                              )
            except:
                left_mat = [[0, 0, 0]] * 21

            # right hand
            try:
                right = results.right_hand_landmarks.landmark
                right_mat = list([landmark.x, landmark.y, landmark.z] for landmark in right)

                if show_landmarks:
                    mp_drawing.draw_landmarks(image, results.right_hand_landmarks, mp_holistic.HAND_CONNECTIONS,
                                              mp_drawing.DrawingSpec(color=(76, 22, 121), thickness=1, circle_radius=2),
                                              mp_drawing.DrawingSpec(color=(44, 250, 44), thickness=1, circle_radius=1)
                                              )
            except:
                right_mat = [[0, 0, 0]] * 21

            iter_landmarks = left_mat + right_mat  # + pose_mat
            landmark_list.append(iter_landmarks)

            if show_landmarks:
                plt.imshow(image)
                plt.show()

            frame_counter += 1

    cap.release()

    frames = len(landmark_list)
    if frames < NUM_FRAMES:
        for i in range(NUM_FRAMES - frames):
            landmark_list = [landmark_list[0]] + landmark_list
    elif frames > NUM_FRAMES:
        start = (frames - NUM_FRAMES) // 2
        landmark_list = landmark_list[start:start + NUM_FRAMES]

    landmark_list = np.array([landmark_list], dtype=np.float32)

    if landmark_list.shape == (1, 30, 42, 3):
        landmark_list = landmark_list.reshape(landmark_list.shape[0], landmark_list.shape[1], -1)
        inp = torch.from_numpy(landmark_list).to(device)

        # inp = torch.randn(size=[1, 30, 126], dtype=torch.float32)

        with torch.no_grad():
            out = model.generate(inp, label2idx[bos_token]).numpy()
        res1 = ""
        for p in out:
            res1 += idx2label[p]
            if p == label2idx[eos_token]:
                break

        return res1
    else:
        return f'Classification Error {landmark_list.shape}'


gr.Interface(fn=classify_image,
             inputs=gr.Video(height=360, width=480),
             outputs='text').launch(share=True)