Spaces:
Sleeping
Sleeping
File size: 12,903 Bytes
d74c020 ab068e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import matplotlib.pyplot as plt
import mediapipe as mp
import gradio as gr
import numpy as np
import torch
from torch import nn
import cv2 as cv
mp_drawing = mp.solutions.drawing_utils
mp_holistic = mp.solutions.holistic
frame_size = (350, 200)
NUM_FRAMES = 30
device = "cpu"
unique_symbols = [' ', '!', '(', ')', ',', '-', '0', '1', '2', '4', '5', '6', '7', ':', ';', '?', 'D', 'M', 'a', 'd',
'k', 'l', 'n', 'o', 's', 'no_event', 'Ё', 'А', 'Б', 'В', 'Г', 'Д', 'Е', 'Ж', 'З', 'И', 'Й', 'К', 'Л',
'М', 'Н', 'О', 'П', 'Р', 'С', 'Т', 'У', 'Ф', 'Х', 'Ц', 'Ч', 'Ш', 'Щ', 'Ъ', 'Ы', 'Ь', 'Э', 'Ю', 'Я',
'а', 'б', 'в', 'г', 'д', 'е', 'ж', 'з', 'и', 'й', 'к', 'л', 'м', 'н', 'о', 'п', 'р', 'с', 'т', 'у',
'ф', 'х', 'ц', 'ч', 'ш', 'щ', 'ъ', 'ы', 'ь', 'э', 'ю', 'я', 'ё', "#", "<", ">"]
label2idx = {unique_symbols[i]: i for i in range(len(unique_symbols))}
idx2label = {i: unique_symbols[i] for i in range(len(unique_symbols))}
bos_token = "<"
eos_token = ">"
pad_token = "#"
class TokenEmbedding(nn.Module):
def __init__(self, num_vocab=1000, maxlen=100, num_hid=64):
super().__init__()
self.emb = nn.Embedding(num_vocab, num_hid)
self.pos_emb = nn.Embedding(maxlen, num_hid)
def forward(self, x):
maxlen = x.size()[-1]
x = self.emb(x)
positions = torch.arange(start=0, end=maxlen).to(device)
positions = self.pos_emb(positions)
return x + positions
class LandmarkEmbedding(nn.Module):
def __init__(self, in_ch, num_hid=64):
super().__init__()
self.emb = nn.Sequential(
nn.Conv1d(in_channels=in_ch, out_channels=num_hid, kernel_size=11, padding="same"),
nn.ReLU(),
nn.Conv1d(in_channels=num_hid, out_channels=num_hid, kernel_size=11, padding="same"),
nn.ReLU(),
nn.Conv1d(in_channels=num_hid, out_channels=num_hid, kernel_size=11, padding="same"),
nn.ReLU()
)
def forward(self, x):
x = x.permute(0, 2, 1)
x = self.emb(x)
x = x.permute(0, 2, 1)
return x
class TransformerEncoder(nn.Module):
def __init__(self, embed_dim, num_heads, feed_forward_dim, rate=0.1):
super().__init__()
self.att = nn.MultiheadAttention(num_heads=num_heads, embed_dim=embed_dim, batch_first=True)
self.ffn = nn.Sequential(
nn.Linear(in_features=embed_dim, out_features=feed_forward_dim),
nn.ReLU(),
nn.Linear(in_features=feed_forward_dim, out_features=embed_dim)
)
self.layernorm1 = nn.LayerNorm(normalized_shape=embed_dim, eps=1e-6)
self.layernorm2 = nn.LayerNorm(normalized_shape=embed_dim, eps=1e-6)
self.dropout1 = nn.Dropout(rate)
self.dropout2 = nn.Dropout(rate)
def forward(self, inputs):
attn_output = self.att(inputs, inputs, inputs)[0]
attn_output = self.dropout1(attn_output)
out1 = self.layernorm1(inputs + attn_output)
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output)
return self.layernorm2(out1 + ffn_output)
class TransformerDecoder(nn.Module):
def __init__(self, embed_dim, num_heads, feed_forward_dim, dropout_rate=0.1):
super().__init__()
self.num_heads = num_heads
self.layernorm1 = nn.LayerNorm(normalized_shape=embed_dim, eps=1e-6)
self.layernorm2 = nn.LayerNorm(normalized_shape=embed_dim, eps=1e-6)
self.layernorm3 = nn.LayerNorm(normalized_shape=embed_dim, eps=1e-6)
self.self_att = nn.MultiheadAttention(num_heads=num_heads, embed_dim=embed_dim, batch_first=True)
self.enc_att = nn.MultiheadAttention(num_heads=num_heads, embed_dim=embed_dim, batch_first=True)
self.self_dropout = nn.Dropout(0.5)
self.enc_dropout = nn.Dropout(0.1)
self.ffn_dropout = nn.Dropout(0.1)
self.ffn = nn.Sequential(
nn.Linear(in_features=embed_dim, out_features=feed_forward_dim),
nn.ReLU(),
nn.Linear(in_features=feed_forward_dim, out_features=embed_dim)
)
def causal_attention_mask(self, batch_size, n_dest, n_src, dtype):
"""Masks the upper half of the dot product matrix in self attention.
This prevents flow of information from future tokens to current token.
1's in the lower triangle, counting from the lower right corner.
"""
i = torch.arange(start=0, end=n_dest)[:, None]
j = torch.arange(start=0, end=n_src)
m = i >= j - n_src + n_dest
mask = m.type(dtype)
mask = torch.reshape(mask, [1, n_dest, n_src])
batch_size = torch.LongTensor([batch_size])
mult = torch.cat((batch_size * self.num_heads, torch.ones(1, 2).type(torch.int32).squeeze(0)), axis=0)
mult = tuple(mult.detach().cpu().numpy())
return torch.tile(mask, mult).to(device)
def forward(self, enc_out, target):
input_shape = target.size()
batch_size = input_shape[0]
seq_len = input_shape[1]
causal_mask = self.causal_attention_mask(batch_size, seq_len, seq_len, torch.bool)
target_att = self.self_att(target, target, target, is_causal=True)[0]
self_dropout = self.self_dropout(target_att)
target_norm = self.layernorm1(target + self_dropout)
enc_out = self.enc_att(target_norm, enc_out, enc_out)[0]
enc_out_norm = self.layernorm2(self.enc_dropout(enc_out) + target_norm)
ffn_out = self.ffn(enc_out_norm)
ffn_out_norm = self.layernorm3(enc_out_norm + self.ffn_dropout(ffn_out))
return ffn_out_norm
class Transformer(nn.Module):
def __init__(
self,
num_hid=64,
num_head=2,
num_feed_forward=128,
target_maxlen=100,
num_layers_enc=4,
num_layers_dec=1,
num_classes=10,
in_ch=126
):
super().__init__()
self.num_layers_enc = num_layers_enc
self.num_layers_dec = num_layers_dec
self.target_maxlen = target_maxlen
self.num_classes = num_classes
self.enc_input = LandmarkEmbedding(in_ch=in_ch, num_hid=num_hid)
self.dec_input = TokenEmbedding(
num_vocab=num_classes, maxlen=target_maxlen, num_hid=num_hid
)
list_encoder = [self.enc_input] + [
TransformerEncoder(num_hid, num_head, num_feed_forward)
for _ in range(num_layers_enc)
]
self.encoder = nn.Sequential(*list_encoder)
for i in range(num_layers_dec):
setattr(
self,
f"dec_layer_{i}",
TransformerDecoder(num_hid, num_head, num_feed_forward),
)
self.classifier = nn.Linear(in_features=num_hid, out_features=num_classes)
def decode(self, enc_out, target):
y = self.dec_input(target)
for i in range(self.num_layers_dec):
y = getattr(self, f"dec_layer_{i}")(enc_out, y)
return y
def forward(self, source, target):
x = self.encoder(source)
y = self.decode(x, target)
y = self.classifier(y)
return y
def generate(self, source, target_start_token_idx):
"""Performs inference over one batch of inputs using greedy decoding."""
bs = source.size()[0]
enc = self.encoder(source)
dec_input = torch.ones((bs, 1), dtype=torch.int32) * target_start_token_idx
dec_input = dec_input.to(device)
dec_logits = []
for i in range(self.target_maxlen - 1):
dec_out = self.decode(enc, dec_input)
logits = self.classifier(dec_out)
logits = torch.argmax(logits, dim=-1).type(torch.int32)
# last_logit = tf.expand_dims(logits[:, -1], axis=-1)
last_logit = logits[:, -1].unsqueeze(0)
dec_logits.append(last_logit)
dec_input = torch.concat([dec_input, last_logit], axis=-1)
dec_input = dec_input.squeeze(0).cpu()
return dec_input
model = torch.load("weights.pt", map_location=torch.device('cpu'))
model.eval()
def predict(inp):
x = torch.from_numpy(inp).to(device)
enc_out = model.generate(x.unsqueeze(0), label2idx[bos_token]).numpy()
res1 = ""
for p in enc_out:
res1 += idx2label[p]
if p == label2idx[eos_token]:
break
print(f"prediction: {res1}\n")
def mediapipe_detection(image, model, show_landmarks):
image = cv.cvtColor(image, cv.COLOR_BGR2RGB) # COLOR CONVERSION BGR 2 RGB
image = cv.flip(image, 1)
image.flags.writeable = False # Image is no longer writeable
results = model.process(image) # Make prediction
if show_landmarks:
image.flags.writeable = True # Image is now writeable
image = cv.cvtColor(image, cv.COLOR_RGB2BGR) # COLOR COVERSION RGB 2 BGR
return image, results
def classify_image(inp):
cap = cv.VideoCapture(inp)
landmark_list = []
frame_counter = 0
with mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5) as holistic:
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame = cv.resize(frame, frame_size)
show_landmarks = False # FIX ME
image, results = mediapipe_detection(frame, holistic, show_landmarks)
# pose
try:
pose = results.pose_landmarks.landmark
pose_mat = list([landmark.x, landmark.y, landmark.z] for landmark in pose[11:17])
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_holistic.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=(245, 117, 66), thickness=1, circle_radius=2),
mp_drawing.DrawingSpec(color=(245, 66, 230), thickness=1, circle_radius=1)
)
except:
pose_mat = [[0, 0, 0]] * 6
# print(pose_show)
# left hand
try:
left = results.left_hand_landmarks.landmark
left_mat = list([landmark.x, landmark.y, landmark.z] for landmark in left)
if show_landmarks:
mp_drawing.draw_landmarks(image, results.left_hand_landmarks, mp_holistic.HAND_CONNECTIONS,
mp_drawing.DrawingSpec(color=(121, 22, 76), thickness=1, circle_radius=2),
mp_drawing.DrawingSpec(color=(121, 44, 250), thickness=1, circle_radius=1)
)
except:
left_mat = [[0, 0, 0]] * 21
# right hand
try:
right = results.right_hand_landmarks.landmark
right_mat = list([landmark.x, landmark.y, landmark.z] for landmark in right)
if show_landmarks:
mp_drawing.draw_landmarks(image, results.right_hand_landmarks, mp_holistic.HAND_CONNECTIONS,
mp_drawing.DrawingSpec(color=(76, 22, 121), thickness=1, circle_radius=2),
mp_drawing.DrawingSpec(color=(44, 250, 44), thickness=1, circle_radius=1)
)
except:
right_mat = [[0, 0, 0]] * 21
iter_landmarks = left_mat + right_mat # + pose_mat
landmark_list.append(iter_landmarks)
if show_landmarks:
plt.imshow(image)
plt.show()
frame_counter += 1
cap.release()
frames = len(landmark_list)
if frames < NUM_FRAMES:
for i in range(NUM_FRAMES - frames):
landmark_list = [landmark_list[0]] + landmark_list
elif frames > NUM_FRAMES:
start = (frames - NUM_FRAMES) // 2
landmark_list = landmark_list[start:start + NUM_FRAMES]
landmark_list = np.array([landmark_list], dtype=np.float32)
if landmark_list.shape == (1, 30, 42, 3):
landmark_list = landmark_list.reshape(landmark_list.shape[0], landmark_list.shape[1], -1)
inp = torch.from_numpy(landmark_list).to(device)
# inp = torch.randn(size=[1, 30, 126], dtype=torch.float32)
with torch.no_grad():
out = model.generate(inp, label2idx[bos_token]).numpy()
res1 = ""
for p in out:
res1 += idx2label[p]
if p == label2idx[eos_token]:
break
return res1
else:
return f'Classification Error {landmark_list.shape}'
gr.Interface(fn=classify_image,
inputs=gr.Video(height=360, width=480),
outputs='text').launch()
|