Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,870 Bytes
98844c3 7fe9ab6 98844c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import torch
import torch.nn as nn
from promptda.model.dpt import DPTHead
from promptda.model.config import model_configs
from promptda.utils.logger import Log
import os
from pathlib import Path
from huggingface_hub import hf_hub_download
class PromptDA(nn.Module):
patch_size = 14 # patch size of the pretrained dinov2 model
use_bn = False
use_clstoken = False
output_act = 'sigmoid'
def __init__(self,
encoder='vitl',
ckpt_path='data/checkpoints/promptda_vitl.ckpt'):
super().__init__()
model_config = model_configs[encoder]
self.encoder = encoder
self.model_config = model_config
self.pretrained = torch.hub.load(
'torchhub/facebookresearch_dinov2_main',
'dinov2_{:}14'.format(encoder),
source='local',
pretrained=False)
dim = self.pretrained.blocks[0].attn.qkv.in_features
self.depth_head = DPTHead(nclass=1,
in_channels=dim,
features=model_config['features'],
out_channels=model_config['out_channels'],
use_bn=self.use_bn,
use_clstoken=self.use_clstoken,
output_act=self.output_act)
# mean and std of the pretrained dinov2 model
self.register_buffer('_mean', torch.tensor(
[0.485, 0.456, 0.406]).view(1, 3, 1, 1))
self.register_buffer('_std', torch.tensor(
[0.229, 0.224, 0.225]).view(1, 3, 1, 1))
self.load_checkpoint(ckpt_path)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path = None, model_kwargs = None, **hf_kwargs):
"""
Load a model from a checkpoint file.
### Parameters:
- `pretrained_model_name_or_path`: path to the checkpoint file or repo id.
- `model_kwargs`: additional keyword arguments to override the parameters in the checkpoint.
- `hf_kwargs`: additional keyword arguments to pass to the `hf_hub_download` function. Ignored if `pretrained_model_name_or_path` is a local path.
### Returns:
- A new instance of `MoGe` with the parameters loaded from the checkpoint.
"""
ckpt_path = None
if Path(pretrained_model_name_or_path).exists():
ckpt_path = pretrained_model_name_or_path
else:
cached_checkpoint_path = hf_hub_download(
repo_id=pretrained_model_name_or_path,
repo_type="model",
filename="model.ckpt",
**hf_kwargs
)
ckpt_path = cached_checkpoint_path
# model_config = checkpoint['model_config']
# if model_kwargs is not None:
# model_config.update(model_kwargs)
if model_kwargs is None:
model_kwargs = {}
model_kwargs.update({'ckpt_path': ckpt_path})
model = cls(**model_kwargs)
return model
def load_checkpoint(self, ckpt_path):
if os.path.exists(ckpt_path):
Log.info(f'Loading checkpoint from {ckpt_path}')
checkpoint = torch.load(ckpt_path, map_location='cpu')
self.load_state_dict(
{k[9:]: v for k, v in checkpoint['state_dict'].items()})
else:
Log.warn(f'Checkpoint {ckpt_path} not found')
def forward(self, x, prompt_depth=None):
assert prompt_depth is not None, 'prompt_depth is required'
prompt_depth, min_val, max_val = self.normalize(prompt_depth)
h, w = x.shape[-2:]
features = self.pretrained.get_intermediate_layers(
x, self.model_config['layer_idxs'],
return_class_token=True)
patch_h, patch_w = h // self.patch_size, w // self.patch_size
depth = self.depth_head(features, patch_h, patch_w, prompt_depth)
depth = self.denormalize(depth, min_val, max_val)
return depth
@torch.no_grad()
def predict(self,
image: torch.Tensor,
prompt_depth: torch.Tensor):
return self.forward(image, prompt_depth)
def normalize(self,
prompt_depth: torch.Tensor):
B, C, H, W = prompt_depth.shape
min_val = torch.quantile(
prompt_depth.reshape(B, -1), 0., dim=1, keepdim=True)[:, :, None, None]
max_val = torch.quantile(
prompt_depth.reshape(B, -1), 1., dim=1, keepdim=True)[:, :, None, None]
prompt_depth = (prompt_depth - min_val) / (max_val - min_val)
return prompt_depth, min_val, max_val
def denormalize(self,
depth: torch.Tensor,
min_val: torch.Tensor,
max_val: torch.Tensor):
return depth * (max_val - min_val) + min_val
|