Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,013 Bytes
98844c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from enum import Enum
import os
from pathlib import Path
from typing import Any, Dict, Optional
class ClusterType(Enum):
AWS = "aws"
FAIR = "fair"
RSC = "rsc"
def _guess_cluster_type() -> ClusterType:
uname = os.uname()
if uname.sysname == "Linux":
if uname.release.endswith("-aws"):
# Linux kernel versions on AWS instances are of the form "5.4.0-1051-aws"
return ClusterType.AWS
elif uname.nodename.startswith("rsc"):
# Linux kernel versions on RSC instances are standard ones but hostnames start with "rsc"
return ClusterType.RSC
return ClusterType.FAIR
def get_cluster_type(cluster_type: Optional[ClusterType] = None) -> Optional[ClusterType]:
if cluster_type is None:
return _guess_cluster_type()
return cluster_type
def get_checkpoint_path(cluster_type: Optional[ClusterType] = None) -> Optional[Path]:
cluster_type = get_cluster_type(cluster_type)
if cluster_type is None:
return None
CHECKPOINT_DIRNAMES = {
ClusterType.AWS: "checkpoints",
ClusterType.FAIR: "checkpoint",
ClusterType.RSC: "checkpoint/dino",
}
return Path("/") / CHECKPOINT_DIRNAMES[cluster_type]
def get_user_checkpoint_path(cluster_type: Optional[ClusterType] = None) -> Optional[Path]:
checkpoint_path = get_checkpoint_path(cluster_type)
if checkpoint_path is None:
return None
username = os.environ.get("USER")
assert username is not None
return checkpoint_path / username
def get_slurm_partition(cluster_type: Optional[ClusterType] = None) -> Optional[str]:
cluster_type = get_cluster_type(cluster_type)
if cluster_type is None:
return None
SLURM_PARTITIONS = {
ClusterType.AWS: "learnlab",
ClusterType.FAIR: "learnlab",
ClusterType.RSC: "learn",
}
return SLURM_PARTITIONS[cluster_type]
def get_slurm_executor_parameters(
nodes: int, num_gpus_per_node: int, cluster_type: Optional[ClusterType] = None, **kwargs
) -> Dict[str, Any]:
# create default parameters
params = {
"mem_gb": 0, # Requests all memory on a node, see https://slurm.schedmd.com/sbatch.html
"gpus_per_node": num_gpus_per_node,
"tasks_per_node": num_gpus_per_node, # one task per GPU
"cpus_per_task": 10,
"nodes": nodes,
"slurm_partition": get_slurm_partition(cluster_type),
}
# apply cluster-specific adjustments
cluster_type = get_cluster_type(cluster_type)
if cluster_type == ClusterType.AWS:
params["cpus_per_task"] = 12
del params["mem_gb"]
elif cluster_type == ClusterType.RSC:
params["cpus_per_task"] = 12
# set additional parameters / apply overrides
params.update(kwargs)
return params
|