File size: 2,626 Bytes
03ff95e
1cedc15
03ff95e
 
1cedc15
03ff95e
 
 
 
 
 
6bd075e
 
 
 
03ff95e
 
 
 
 
 
c15bd6e
 
 
 
 
 
03ff95e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c15bd6e
 
03ff95e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c15bd6e
03ff95e
 
 
 
 
 
 
 
aa8112b
e6f3be0
03ff95e
 
495bb87
03ff95e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import os
import gradio as gr
from gradio import FlaggingCallback
from gradio.components import IOComponent

from transformers import pipeline

from typing import List, Optional, Any

import argilla as rg

import os



nlp = pipeline("ner", model="deprem-ml/deprem-ner")

examples = [
  ["Lütfen yardım Akevler mahallesi Rüzgar sokak Tuncay apartmanı zemin kat Antakya akrabalarım gâçük altında #hatay #Afad"]
]

def create_record(input_text, feedback):
    # define the record status based on feedback
    # default means it needs to be reviewed --> "Incorrect" or "Ambiguous"
    # validated means it's correct and has been checked --> "Correct"
    status = "Validated" if feedback == "Correct" else "Default"
    
    # Making the prediction
    predictions = nlp(input_text, aggregation_strategy="first")
    
    # Creating the predicted entities as a list of tuples (entity, start_char, end_char, score)
    prediction = [(pred["entity_group"], pred["start"], pred["end"], pred["score"]) for pred in predictions]
    
    # Create word tokens
    batch_encoding = nlp.tokenizer(input_text)
    word_ids = sorted(set(batch_encoding.word_ids()) - {None})
    words = []
    for word_id in word_ids:
        char_span = batch_encoding.word_to_chars(word_id)
        words.append(input_text[char_span.start:char_span.end])
    
    # Building a TokenClassificationRecord
    record = rg.TokenClassificationRecord(
        text=input_text,
        tokens=words,
        prediction=prediction,
        prediction_agent="deprem-ml/deprem-ner",
        status=status,
        metadata={"feedback": feedback}
    )
    print(record)
    return record

class ArgillaLogger(FlaggingCallback):
    def __init__(self, api_url, api_key, dataset_name):
        rg.init(api_url=api_url, api_key=api_key)
        self.dataset_name = dataset_name
    def setup(self, components: List[IOComponent], flagging_dir: str):
        pass
    def flag(
        self,
        flag_data: List[Any],
        flag_option: Optional[str] = None,
        flag_index: Optional[int] = None,
        username: Optional[str] = None,
    ) -> int:
        text = flag_data[0]
        inference = flag_data[1]
        rg.log(name=self.dataset_name, records=create_record(text), flag_option)


        
gr.Interface.load(
    "models/deprem-ml/deprem-ner",
    examples=examples,
    allow_flagging="manual",
    flagging_callback=ArgillaLogger(
        api_url="https://merve-argilla.hf.space", 
        api_key=os.getenv("TEAM_API_KEY"), 
        dataset_name="ner-flags"
    ),
    flagging_options=["Correct", "Incorrect", "Ambiguous"]
).launch()