File size: 5,979 Bytes
6f4e6ed
 
 
3a25e28
6f4e6ed
 
 
 
3a25e28
7174da6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a25e28
6f4e6ed
 
 
 
 
 
3a25e28
6f4e6ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7174da6
6f4e6ed
 
7174da6
6f4e6ed
 
 
 
 
 
 
 
 
 
7174da6
 
 
 
 
7ade7eb
6f4e6ed
7174da6
6f4e6ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14fb0af
 
7174da6
6f4e6ed
 
 
 
 
 
 
 
 
1cc9991
7174da6
6f4e6ed
7174da6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from transformers import SegformerForSemanticSegmentation
from transformers import SegformerImageProcessor
from PIL import Image
import gradio as gr  
import numpy as np
import random 
import cv2
import torch

from imutils import perspective


def midpoint(ptA, ptB):
	return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5)
# Load in image, convert to gray scale, and Otsu's threshold
kernel1 =( np.ones((5,5), dtype=np.float32))
blur_radius=0.5
kernel_sharpening = np.array([[-1,-1,-1], 
                              [-1,9,-1], 
                             [-1,-1,-1]])*(1/9)


def cca_analysis(image,predicted_mask):

    image2=np.asarray(image)
    print(image.shape)
    image = cv2.resize(predicted_mask, (image2.shape[1],image2.shape[1]), interpolation = cv2.INTER_AREA)

    image=cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel1,iterations=1 )
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]

    labels=cv2.connectedComponents(thresh,connectivity=8)[1]       
    a=np.unique(labels)
    count2=0
    for label in a:
        if label == 0:
            continue

        # Create a mask
        mask = np.zeros(thresh.shape, dtype="uint8")
        mask[labels == label] = 255

        # Find contours and determine contour area
        cnts,hieararch = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        cnts = cnts[0]
        c_area = cv2.contourArea(cnts)
        # threshhold for tooth count
        if c_area>100:
            count2+=1
        
        rect = cv2.minAreaRect(cnts)
        box = cv2.boxPoints(rect)
        box = np.array(box, dtype="int")    
        box = perspective.order_points(box)
        color1 = (list(np.random.choice(range(150), size=3)))  
        color =[int(color1[0]), int(color1[1]), int(color1[2])]  
        cv2.drawContours(image2,[box.astype("int")],0,color,2)
        (tl,tr,br,bl)=box
        
        (tltrX,tltrY)=midpoint(tl,tr)
        (blbrX,blbrY)=midpoint(bl,br)
        # compute the midpoint between the top-left and top-right points,
        # followed by the midpoint between the top-righ and bottom-right
        (tlblX,tlblY)=midpoint(tl,bl)
        (trbrX,trbrY)=midpoint(tr,br)
        # draw the midpoints on the image
        cv2.circle(image2, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1)
        cv2.circle(image2, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1)
        cv2.circle(image2, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1)
        cv2.circle(image2, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1)
        cv2.line(image2, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)),color, 2)
        cv2.line(image2, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)),color, 2)
    return image2

def to_rgb(img):
    result_new=np.zeros((img.shape[1],img.shape[0],3))
    result_new[:,:,0]=img
    result_new[:,:,1]=img
    result_new[:,:,2]=img
    result_new=np.uint8(result_new*255)
    return result_new

image_list = [
    "data/1.png",
    "data/2.png",
    "data/3.png",
    "data/4.png",
]

model_path = ['deprem-ml/deprem_satellite_semantic_whu']

def visualize_instance_seg_mask(mask):
    # Initialize image with zeros with the image resolution
    # of the segmentation mask and 3 channels
    image = np.zeros((mask.shape[0], mask.shape[1], 3))

    # Create labels
    labels = np.unique(mask)
    label2color = {
        label: (
            random.randint(0, 255),
            random.randint(0, 255),
            random.randint(0, 255),
        )
        for label in labels
    }

    for height in range(image.shape[0]):
        for width in range(image.shape[1]):
            image[height, width, :] = label2color[mask[height, width]]

    image = image / 255
    return image


def Segformer_Segmentation(image_path, model_id,postpro): 
    output_save = "output.png"
    
    test_image = cv2.imread(image_path)

    model = SegformerForSemanticSegmentation.from_pretrained(model_id)
    proccessor = SegformerImageProcessor(model_id)
    
    inputs = proccessor(images=test_image, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
        
    result = proccessor.post_process_semantic_segmentation(outputs)[0]
    result = np.array(result)
    if postpro=="Connected Components Labelling":
        result=to_rgb(result)
        result=cca_analysis(test_image,result)
    else:
        result = visualize_instance_seg_mask(result)
        result=result*255

    cv2.imwrite(output_save, result)
    return image_path, output_save

examples = [[image_list[0], "deprem-ml/deprem_satellite_semantic_whu"],
            [image_list[1], "deprem-ml/deprem_satellite_semantic_whu"],
            [image_list[2], "deprem-ml/deprem_satellite_semantic_whu"],
            [image_list[3], "deprem-ml/deprem_satellite_semantic_whu"]]

title = "Deprem ML - Segformer Semantic Segmentation"

app = gr.Blocks()
with app:
    gr.HTML("<h1 style='text-align: center'>{}</h1>".format(title))    
    with gr.Row():
        with gr.Column():
            input_video = gr.Image(type='filepath')
            model_id =  gr.Dropdown(value=model_path[0], choices=model_path,label="Model Name")
            cca =  gr.Dropdown(value="Connected Components Labelling", choices=["Connected Components Labelling","No Post Process"],label="Post Process")

            input_video_button = gr.Button(value="Predict")    
                    
        with gr.Column():
            output_orijinal_image = gr.Image(type='filepath')
            
        with gr.Column():
            output_mask_image =  gr.Image(type='filepath')

        
    gr.Examples(examples, inputs=[input_video, model_id,cca], outputs=[output_orijinal_image, output_mask_image], fn=Segformer_Segmentation, cache_examples=True)
    input_video_button.click(Segformer_Segmentation, inputs=[input_video, model_id,cca], outputs=[output_orijinal_image, output_mask_image])

app.launch(debug=True)