File size: 25,511 Bytes
fc8c192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
import cv2
import numpy as np
from numpy.fft import fft
from numpy.linalg import norm


def vector_slope(vec):
    assert len(vec) == 2
    return abs(vec[1] / (vec[0] + 1e-8))


class FCENetTargets:
    """Generate the ground truth targets of FCENet: Fourier Contour Embedding
    for Arbitrary-Shaped Text Detection.

    [https://arxiv.org/abs/2104.10442]

    Args:
        fourier_degree (int): The maximum Fourier transform degree k.
        resample_step (float): The step size for resampling the text center
            line (TCL). It's better not to exceed half of the minimum width.
        center_region_shrink_ratio (float): The shrink ratio of text center
            region.
        level_size_divisors (tuple(int)): The downsample ratio on each level.
        level_proportion_range (tuple(tuple(int))): The range of text sizes
            assigned to each level.
    """

    def __init__(
        self,
        fourier_degree=5,
        resample_step=4.0,
        center_region_shrink_ratio=0.3,
        level_size_divisors=(8, 16, 32),
        level_proportion_range=((0, 0.25), (0.2, 0.65), (0.55, 1.0)),
        orientation_thr=2.0,
        **kwargs
    ):

        super().__init__()
        assert isinstance(level_size_divisors, tuple)
        assert isinstance(level_proportion_range, tuple)
        assert len(level_size_divisors) == len(level_proportion_range)
        self.fourier_degree = fourier_degree
        self.resample_step = resample_step
        self.center_region_shrink_ratio = center_region_shrink_ratio
        self.level_size_divisors = level_size_divisors
        self.level_proportion_range = level_proportion_range

        self.orientation_thr = orientation_thr

    def vector_angle(self, vec1, vec2):
        if vec1.ndim > 1:
            unit_vec1 = vec1 / (norm(vec1, axis=-1) + 1e-8).reshape((-1, 1))
        else:
            unit_vec1 = vec1 / (norm(vec1, axis=-1) + 1e-8)
        if vec2.ndim > 1:
            unit_vec2 = vec2 / (norm(vec2, axis=-1) + 1e-8).reshape((-1, 1))
        else:
            unit_vec2 = vec2 / (norm(vec2, axis=-1) + 1e-8)
        return np.arccos(np.clip(np.sum(unit_vec1 * unit_vec2, axis=-1), -1.0, 1.0))

    def resample_line(self, line, n):
        """Resample n points on a line.

        Args:
            line (ndarray): The points composing a line.
            n (int): The resampled points number.

        Returns:
            resampled_line (ndarray): The points composing the resampled line.
        """

        assert line.ndim == 2
        assert line.shape[0] >= 2
        assert line.shape[1] == 2
        assert isinstance(n, int)
        assert n > 0

        length_list = [norm(line[i + 1] - line[i]) for i in range(len(line) - 1)]
        total_length = sum(length_list)
        length_cumsum = np.cumsum([0.0] + length_list)
        delta_length = total_length / (float(n) + 1e-8)

        current_edge_ind = 0
        resampled_line = [line[0]]

        for i in range(1, n):
            current_line_len = i * delta_length

            while current_line_len >= length_cumsum[current_edge_ind + 1]:
                current_edge_ind += 1
            current_edge_end_shift = current_line_len - length_cumsum[current_edge_ind]
            end_shift_ratio = current_edge_end_shift / length_list[current_edge_ind]
            current_point = (
                line[current_edge_ind]
                + (line[current_edge_ind + 1] - line[current_edge_ind])
                * end_shift_ratio
            )
            resampled_line.append(current_point)

        resampled_line.append(line[-1])
        resampled_line = np.array(resampled_line)

        return resampled_line

    def reorder_poly_edge(self, points):
        """Get the respective points composing head edge, tail edge, top
        sideline and bottom sideline.

        Args:
            points (ndarray): The points composing a text polygon.

        Returns:
            head_edge (ndarray): The two points composing the head edge of text
                polygon.
            tail_edge (ndarray): The two points composing the tail edge of text
                polygon.
            top_sideline (ndarray): The points composing top curved sideline of
                text polygon.
            bot_sideline (ndarray): The points composing bottom curved sideline
                of text polygon.
        """

        assert points.ndim == 2
        assert points.shape[0] >= 4
        assert points.shape[1] == 2

        head_inds, tail_inds = self.find_head_tail(points, self.orientation_thr)
        head_edge, tail_edge = points[head_inds], points[tail_inds]

        pad_points = np.vstack([points, points])
        if tail_inds[1] < 1:
            tail_inds[1] = len(points)
        sideline1 = pad_points[head_inds[1] : tail_inds[1]]
        sideline2 = pad_points[tail_inds[1] : (head_inds[1] + len(points))]
        sideline_mean_shift = np.mean(sideline1, axis=0) - np.mean(sideline2, axis=0)

        if sideline_mean_shift[1] > 0:
            top_sideline, bot_sideline = sideline2, sideline1
        else:
            top_sideline, bot_sideline = sideline1, sideline2

        return head_edge, tail_edge, top_sideline, bot_sideline

    def find_head_tail(self, points, orientation_thr):
        """Find the head edge and tail edge of a text polygon.

        Args:
            points (ndarray): The points composing a text polygon.
            orientation_thr (float): The threshold for distinguishing between
                head edge and tail edge among the horizontal and vertical edges
                of a quadrangle.

        Returns:
            head_inds (list): The indexes of two points composing head edge.
            tail_inds (list): The indexes of two points composing tail edge.
        """

        assert points.ndim == 2
        assert points.shape[0] >= 4
        assert points.shape[1] == 2
        assert isinstance(orientation_thr, float)

        if len(points) > 4:
            pad_points = np.vstack([points, points[0]])
            edge_vec = pad_points[1:] - pad_points[:-1]

            theta_sum = []
            adjacent_vec_theta = []
            for i, edge_vec1 in enumerate(edge_vec):
                adjacent_ind = [x % len(edge_vec) for x in [i - 1, i + 1]]
                adjacent_edge_vec = edge_vec[adjacent_ind]
                temp_theta_sum = np.sum(self.vector_angle(edge_vec1, adjacent_edge_vec))
                temp_adjacent_theta = self.vector_angle(
                    adjacent_edge_vec[0], adjacent_edge_vec[1]
                )
                theta_sum.append(temp_theta_sum)
                adjacent_vec_theta.append(temp_adjacent_theta)
            theta_sum_score = np.array(theta_sum) / np.pi
            adjacent_theta_score = np.array(adjacent_vec_theta) / np.pi
            poly_center = np.mean(points, axis=0)
            edge_dist = np.maximum(
                norm(pad_points[1:] - poly_center, axis=-1),
                norm(pad_points[:-1] - poly_center, axis=-1),
            )
            dist_score = edge_dist / np.max(edge_dist)
            position_score = np.zeros(len(edge_vec))
            score = 0.5 * theta_sum_score + 0.15 * adjacent_theta_score
            score += 0.35 * dist_score
            if len(points) % 2 == 0:
                position_score[(len(score) // 2 - 1)] += 1
                position_score[-1] += 1
            score += 0.1 * position_score
            pad_score = np.concatenate([score, score])
            score_matrix = np.zeros((len(score), len(score) - 3))
            x = np.arange(len(score) - 3) / float(len(score) - 4)
            gaussian = (
                1.0
                / (np.sqrt(2.0 * np.pi) * 0.5)
                * np.exp(-np.power((x - 0.5) / 0.5, 2.0) / 2)
            )
            gaussian = gaussian / np.max(gaussian)
            for i in range(len(score)):
                score_matrix[i, :] = (
                    score[i]
                    + pad_score[(i + 2) : (i + len(score) - 1)] * gaussian * 0.3
                )

            head_start, tail_increment = np.unravel_index(
                score_matrix.argmax(), score_matrix.shape
            )
            tail_start = (head_start + tail_increment + 2) % len(points)
            head_end = (head_start + 1) % len(points)
            tail_end = (tail_start + 1) % len(points)

            if head_end > tail_end:
                head_start, tail_start = tail_start, head_start
                head_end, tail_end = tail_end, head_end
            head_inds = [head_start, head_end]
            tail_inds = [tail_start, tail_end]
        else:
            if vector_slope(points[1] - points[0]) + vector_slope(
                points[3] - points[2]
            ) < vector_slope(points[2] - points[1]) + vector_slope(
                points[0] - points[3]
            ):
                horizontal_edge_inds = [[0, 1], [2, 3]]
                vertical_edge_inds = [[3, 0], [1, 2]]
            else:
                horizontal_edge_inds = [[3, 0], [1, 2]]
                vertical_edge_inds = [[0, 1], [2, 3]]

            vertical_len_sum = norm(
                points[vertical_edge_inds[0][0]] - points[vertical_edge_inds[0][1]]
            ) + norm(
                points[vertical_edge_inds[1][0]] - points[vertical_edge_inds[1][1]]
            )
            horizontal_len_sum = norm(
                points[horizontal_edge_inds[0][0]] - points[horizontal_edge_inds[0][1]]
            ) + norm(
                points[horizontal_edge_inds[1][0]] - points[horizontal_edge_inds[1][1]]
            )

            if vertical_len_sum > horizontal_len_sum * orientation_thr:
                head_inds = horizontal_edge_inds[0]
                tail_inds = horizontal_edge_inds[1]
            else:
                head_inds = vertical_edge_inds[0]
                tail_inds = vertical_edge_inds[1]

        return head_inds, tail_inds

    def resample_sidelines(self, sideline1, sideline2, resample_step):
        """Resample two sidelines to be of the same points number according to
        step size.

        Args:
            sideline1 (ndarray): The points composing a sideline of a text
                polygon.
            sideline2 (ndarray): The points composing another sideline of a
                text polygon.
            resample_step (float): The resampled step size.

        Returns:
            resampled_line1 (ndarray): The resampled line 1.
            resampled_line2 (ndarray): The resampled line 2.
        """

        assert sideline1.ndim == sideline2.ndim == 2
        assert sideline1.shape[1] == sideline2.shape[1] == 2
        assert sideline1.shape[0] >= 2
        assert sideline2.shape[0] >= 2
        assert isinstance(resample_step, float)

        length1 = sum(
            [norm(sideline1[i + 1] - sideline1[i]) for i in range(len(sideline1) - 1)]
        )
        length2 = sum(
            [norm(sideline2[i + 1] - sideline2[i]) for i in range(len(sideline2) - 1)]
        )

        total_length = (length1 + length2) / 2
        resample_point_num = max(int(float(total_length) / resample_step), 1)

        resampled_line1 = self.resample_line(sideline1, resample_point_num)
        resampled_line2 = self.resample_line(sideline2, resample_point_num)

        return resampled_line1, resampled_line2

    def generate_center_region_mask(self, img_size, text_polys):
        """Generate text center region mask.

        Args:
            img_size (tuple): The image size of (height, width).
            text_polys (list[list[ndarray]]): The list of text polygons.

        Returns:
            center_region_mask (ndarray): The text center region mask.
        """

        assert isinstance(img_size, tuple)
        # assert check_argument.is_2dlist(text_polys)

        h, w = img_size

        center_region_mask = np.zeros((h, w), np.uint8)

        center_region_boxes = []
        for poly in text_polys:
            # assert len(poly) == 1
            polygon_points = poly.reshape(-1, 2)
            _, _, top_line, bot_line = self.reorder_poly_edge(polygon_points)
            resampled_top_line, resampled_bot_line = self.resample_sidelines(
                top_line, bot_line, self.resample_step
            )
            resampled_bot_line = resampled_bot_line[::-1]
            center_line = (resampled_top_line + resampled_bot_line) / 2

            line_head_shrink_len = (
                norm(resampled_top_line[0] - resampled_bot_line[0]) / 4.0
            )
            line_tail_shrink_len = (
                norm(resampled_top_line[-1] - resampled_bot_line[-1]) / 4.0
            )
            head_shrink_num = int(line_head_shrink_len // self.resample_step)
            tail_shrink_num = int(line_tail_shrink_len // self.resample_step)
            if len(center_line) > head_shrink_num + tail_shrink_num + 2:
                center_line = center_line[
                    head_shrink_num : len(center_line) - tail_shrink_num
                ]
                resampled_top_line = resampled_top_line[
                    head_shrink_num : len(resampled_top_line) - tail_shrink_num
                ]
                resampled_bot_line = resampled_bot_line[
                    head_shrink_num : len(resampled_bot_line) - tail_shrink_num
                ]

            for i in range(0, len(center_line) - 1):
                tl = (
                    center_line[i]
                    + (resampled_top_line[i] - center_line[i])
                    * self.center_region_shrink_ratio
                )
                tr = (
                    center_line[i + 1]
                    + (resampled_top_line[i + 1] - center_line[i + 1])
                    * self.center_region_shrink_ratio
                )
                br = (
                    center_line[i + 1]
                    + (resampled_bot_line[i + 1] - center_line[i + 1])
                    * self.center_region_shrink_ratio
                )
                bl = (
                    center_line[i]
                    + (resampled_bot_line[i] - center_line[i])
                    * self.center_region_shrink_ratio
                )
                current_center_box = np.vstack([tl, tr, br, bl]).astype(np.int32)
                center_region_boxes.append(current_center_box)

        cv2.fillPoly(center_region_mask, center_region_boxes, 1)
        return center_region_mask

    def resample_polygon(self, polygon, n=400):
        """Resample one polygon with n points on its boundary.

        Args:
            polygon (list[float]): The input polygon.
            n (int): The number of resampled points.
        Returns:
            resampled_polygon (list[float]): The resampled polygon.
        """
        length = []

        for i in range(len(polygon)):
            p1 = polygon[i]
            if i == len(polygon) - 1:
                p2 = polygon[0]
            else:
                p2 = polygon[i + 1]
            length.append(((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2) ** 0.5)

        total_length = sum(length)
        n_on_each_line = (np.array(length) / (total_length + 1e-8)) * n
        n_on_each_line = n_on_each_line.astype(np.int32)
        new_polygon = []

        for i in range(len(polygon)):
            num = n_on_each_line[i]
            p1 = polygon[i]
            if i == len(polygon) - 1:
                p2 = polygon[0]
            else:
                p2 = polygon[i + 1]

            if num == 0:
                continue

            dxdy = (p2 - p1) / num
            for j in range(num):
                point = p1 + dxdy * j
                new_polygon.append(point)

        return np.array(new_polygon)

    def normalize_polygon(self, polygon):
        """Normalize one polygon so that its start point is at right most.

        Args:
            polygon (list[float]): The origin polygon.
        Returns:
            new_polygon (lost[float]): The polygon with start point at right.
        """
        temp_polygon = polygon - polygon.mean(axis=0)
        x = np.abs(temp_polygon[:, 0])
        y = temp_polygon[:, 1]
        index_x = np.argsort(x)
        index_y = np.argmin(y[index_x[:8]])
        index = index_x[index_y]
        new_polygon = np.concatenate([polygon[index:], polygon[:index]])
        return new_polygon

    def poly2fourier(self, polygon, fourier_degree):
        """Perform Fourier transformation to generate Fourier coefficients ck
        from polygon.

        Args:
            polygon (ndarray): An input polygon.
            fourier_degree (int): The maximum Fourier degree K.
        Returns:
            c (ndarray(complex)): Fourier coefficients.
        """
        points = polygon[:, 0] + polygon[:, 1] * 1j
        c_fft = fft(points) / len(points)
        c = np.hstack((c_fft[-fourier_degree:], c_fft[: fourier_degree + 1]))
        return c

    def clockwise(self, c, fourier_degree):
        """Make sure the polygon reconstructed from Fourier coefficients c in
        the clockwise direction.

        Args:
            polygon (list[float]): The origin polygon.
        Returns:
            new_polygon (lost[float]): The polygon in clockwise point order.
        """
        if np.abs(c[fourier_degree + 1]) > np.abs(c[fourier_degree - 1]):
            return c
        elif np.abs(c[fourier_degree + 1]) < np.abs(c[fourier_degree - 1]):
            return c[::-1]
        else:
            if np.abs(c[fourier_degree + 2]) > np.abs(c[fourier_degree - 2]):
                return c
            else:
                return c[::-1]

    def cal_fourier_signature(self, polygon, fourier_degree):
        """Calculate Fourier signature from input polygon.

        Args:
              polygon (ndarray): The input polygon.
              fourier_degree (int): The maximum Fourier degree K.
        Returns:
              fourier_signature (ndarray): An array shaped (2k+1, 2) containing
                  real part and image part of 2k+1 Fourier coefficients.
        """
        resampled_polygon = self.resample_polygon(polygon)
        resampled_polygon = self.normalize_polygon(resampled_polygon)

        fourier_coeff = self.poly2fourier(resampled_polygon, fourier_degree)
        fourier_coeff = self.clockwise(fourier_coeff, fourier_degree)

        real_part = np.real(fourier_coeff).reshape((-1, 1))
        image_part = np.imag(fourier_coeff).reshape((-1, 1))
        fourier_signature = np.hstack([real_part, image_part])

        return fourier_signature

    def generate_fourier_maps(self, img_size, text_polys):
        """Generate Fourier coefficient maps.

        Args:
            img_size (tuple): The image size of (height, width).
            text_polys (list[list[ndarray]]): The list of text polygons.

        Returns:
            fourier_real_map (ndarray): The Fourier coefficient real part maps.
            fourier_image_map (ndarray): The Fourier coefficient image part
                maps.
        """

        assert isinstance(img_size, tuple)

        h, w = img_size
        k = self.fourier_degree
        real_map = np.zeros((k * 2 + 1, h, w), dtype=np.float32)
        imag_map = np.zeros((k * 2 + 1, h, w), dtype=np.float32)

        for poly in text_polys:
            mask = np.zeros((h, w), dtype=np.uint8)
            polygon = np.array(poly).reshape((1, -1, 2))
            cv2.fillPoly(mask, polygon.astype(np.int32), 1)
            fourier_coeff = self.cal_fourier_signature(polygon[0], k)
            for i in range(-k, k + 1):
                if i != 0:
                    real_map[i + k, :, :] = (
                        mask * fourier_coeff[i + k, 0]
                        + (1 - mask) * real_map[i + k, :, :]
                    )
                    imag_map[i + k, :, :] = (
                        mask * fourier_coeff[i + k, 1]
                        + (1 - mask) * imag_map[i + k, :, :]
                    )
                else:
                    yx = np.argwhere(mask > 0.5)
                    k_ind = np.ones((len(yx)), dtype=np.int64) * k
                    y, x = yx[:, 0], yx[:, 1]
                    real_map[k_ind, y, x] = fourier_coeff[k, 0] - x
                    imag_map[k_ind, y, x] = fourier_coeff[k, 1] - y

        return real_map, imag_map

    def generate_text_region_mask(self, img_size, text_polys):
        """Generate text center region mask and geometry attribute maps.

        Args:
            img_size (tuple): The image size (height, width).
            text_polys (list[list[ndarray]]): The list of text polygons.

        Returns:
            text_region_mask (ndarray): The text region mask.
        """

        assert isinstance(img_size, tuple)

        h, w = img_size
        text_region_mask = np.zeros((h, w), dtype=np.uint8)

        for poly in text_polys:
            polygon = np.array(poly, dtype=np.int32).reshape((1, -1, 2))
            cv2.fillPoly(text_region_mask, polygon, 1)

        return text_region_mask

    def generate_effective_mask(self, mask_size: tuple, polygons_ignore):
        """Generate effective mask by setting the ineffective regions to 0 and
        effective regions to 1.

        Args:
            mask_size (tuple): The mask size.
            polygons_ignore (list[[ndarray]]: The list of ignored text
                polygons.

        Returns:
            mask (ndarray): The effective mask of (height, width).
        """

        mask = np.ones(mask_size, dtype=np.uint8)

        for poly in polygons_ignore:
            instance = poly.reshape(-1, 2).astype(np.int32).reshape(1, -1, 2)
            cv2.fillPoly(mask, instance, 0)

        return mask

    def generate_level_targets(self, img_size, text_polys, ignore_polys):
        """Generate ground truth target on each level.

        Args:
            img_size (list[int]): Shape of input image.
            text_polys (list[list[ndarray]]): A list of ground truth polygons.
            ignore_polys (list[list[ndarray]]): A list of ignored polygons.
        Returns:
            level_maps (list(ndarray)): A list of ground target on each level.
        """
        h, w = img_size
        lv_size_divs = self.level_size_divisors
        lv_proportion_range = self.level_proportion_range
        lv_text_polys = [[] for i in range(len(lv_size_divs))]
        lv_ignore_polys = [[] for i in range(len(lv_size_divs))]
        level_maps = []
        for poly in text_polys:
            polygon = np.array(poly, dtype=np.int).reshape((1, -1, 2))
            _, _, box_w, box_h = cv2.boundingRect(polygon)
            proportion = max(box_h, box_w) / (h + 1e-8)

            for ind, proportion_range in enumerate(lv_proportion_range):
                if proportion_range[0] < proportion < proportion_range[1]:
                    lv_text_polys[ind].append(poly / lv_size_divs[ind])

        for ignore_poly in ignore_polys:
            polygon = np.array(ignore_poly, dtype=np.int).reshape((1, -1, 2))
            _, _, box_w, box_h = cv2.boundingRect(polygon)
            proportion = max(box_h, box_w) / (h + 1e-8)

            for ind, proportion_range in enumerate(lv_proportion_range):
                if proportion_range[0] < proportion < proportion_range[1]:
                    lv_ignore_polys[ind].append(ignore_poly / lv_size_divs[ind])

        for ind, size_divisor in enumerate(lv_size_divs):
            current_level_maps = []
            level_img_size = (h // size_divisor, w // size_divisor)

            text_region = self.generate_text_region_mask(
                level_img_size, lv_text_polys[ind]
            )[None]
            current_level_maps.append(text_region)

            center_region = self.generate_center_region_mask(
                level_img_size, lv_text_polys[ind]
            )[None]
            current_level_maps.append(center_region)

            effective_mask = self.generate_effective_mask(
                level_img_size, lv_ignore_polys[ind]
            )[None]
            current_level_maps.append(effective_mask)

            fourier_real_map, fourier_image_maps = self.generate_fourier_maps(
                level_img_size, lv_text_polys[ind]
            )
            current_level_maps.append(fourier_real_map)
            current_level_maps.append(fourier_image_maps)

            level_maps.append(np.concatenate(current_level_maps))

        return level_maps

    def generate_targets(self, results):
        """Generate the ground truth targets for FCENet.

        Args:
            results (dict): The input result dictionary.

        Returns:
            results (dict): The output result dictionary.
        """

        assert isinstance(results, dict)
        image = results["image"]
        polygons = results["polys"]
        ignore_tags = results["ignore_tags"]
        h, w, _ = image.shape

        polygon_masks = []
        polygon_masks_ignore = []
        for tag, polygon in zip(ignore_tags, polygons):
            if tag is True:
                polygon_masks_ignore.append(polygon)
            else:
                polygon_masks.append(polygon)

        level_maps = self.generate_level_targets(
            (h, w), polygon_masks, polygon_masks_ignore
        )

        mapping = {
            "p3_maps": level_maps[0],
            "p4_maps": level_maps[1],
            "p5_maps": level_maps[2],
        }
        for key, value in mapping.items():
            results[key] = value

        return results

    def __call__(self, results):
        results = self.generate_targets(results)
        return results