File size: 5,081 Bytes
00e640a
 
 
 
 
 
 
 
 
 
39bb071
00e640a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48b0e4b
 
 
 
 
 
 
 
 
 
00e640a
9c3c7e9
 
 
39bb071
9c3c7e9
 
00e640a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b826d7a
48b0e4b
 
 
 
00e640a
 
 
9c3c7e9
 
 
00e640a
 
 
 
 
9c3c7e9
00e640a
9c3c7e9
b01c3d3
 
00e640a
 
 
9c3c7e9
 
 
 
 
 
 
39bb071
9c3c7e9
00e640a
 
 
 
 
 
1c645c1
 
 
 
 
00e640a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import pandas as pd
import torch

# sparse_indices = torch.load("data/sparse_indices.pt")
# sparse_values = torch.load("data/sparse_values.pt")
class EASE:
    def __init__(self, train, 

            user_col='user_id', 

            item_col='app_id', 

            score_col='is_recommended',

            reg=150.):
        """

            train: (DataFrame) data of training set

            user_col: (String) column name of users column

            item_col: (String) column name of items column

            score_col: (String) column name of interactions column

            reg: (Float) EASE's regularization value

        """

        self.user_col = user_col
        self.item_col = item_col
        self.score_col = score_col
        self.train = train
        self.reg = reg

        self.user_id_col = user_col + "_index"
        self.item_id_col = item_col + "_index"

        self.item_lookup = self.generate_label(train, self.item_col)

        self.item_map = {}
        for item, item_index in self.item_lookup.values:
            self.item_map[item_index] = item

    def generate_label(self, df, col):
        dist_labels = df[[col]].drop_duplicates()
        dist_labels[col +
                    "_index"] = dist_labels[col].astype("category").cat.codes
        
        return dist_labels
    
    def scaling_score(preds_tensor):

        work_tensor = preds_tensor
        min_score = torch.min(preds_tensor)
        max_score = torch.max(preds_tensor)

        scaled =  10 * (work_tensor - min_score) / (max_score - min_score)
        
        return scaled
        
    def predict_active(self, pred_df, 

                    weight_mx,

                    k=10, 

                    weight_lambda=0.8,

                    hybrid_model=True,

                    remove_owned=True):
        """

            Args:

                pred_df: (DataFrame) data of user interactions

                weight: (Tensor) Weight matrix of pre-trained EASE model

                k: (Integer) number of recommendation to be shown

                remove_owned: (Boolean) Whether to remove already interacted items

        """
        train = pd.concat([self.train, pred_df], axis=0)
        user_lookup = self.generate_label(train, self.user_col)

        train = train.merge(user_lookup, on=[self.user_col], sort=False)
        train = train.merge(self.item_lookup, on=[self.item_col], sort=False)

        pred_df = pred_df[[self.user_col]].drop_duplicates()
        pred_df = pred_df.merge(user_lookup, on=[self.user_col], sort=False)

        indices = torch.LongTensor(train[[self.user_id_col, self.item_id_col]].values)
        values = torch.FloatTensor(train[self.score_col])
        sparse = torch.sparse.FloatTensor(indices.T, values)

        # --------------------------------------------------
        user_act_tensor = sparse.index_select(
            dim=0, index=torch.LongTensor(pred_df[self.user_id_col])
        )

        _preds_act_tensor = user_act_tensor @ weight_mx
        _preds_act_tensor = 1 * \
            (_preds_act_tensor - torch.min(_preds_act_tensor)) / \
            (torch.max(_preds_act_tensor) - torch.min(_preds_act_tensor))
        
        if remove_owned:
            _preds_act_tensor += -1. * user_act_tensor

        if hybrid_model:
            _preds_act_tensor = _preds_act_tensor * weight_lambda

        output_preds = []
        score_preds = []
        for _preds in _preds_act_tensor:
            top_items = _preds.topk(k)

            output_preds.append([self.item_map[id] for id in top_items.indices.tolist()])            
            score_preds.append( top_items.values.tolist() )
        
        # print("'\nOutput preds:", output_preds)
        # print("Score preds:", score_preds)
        pred_df['predicted_items'] = output_preds
        pred_df['predicted_score'] = score_preds
        
        escaped_id = [ele for i_list in pred_df['predicted_items'].values for ele in i_list]
        escaped_score = [score for s_list in pred_df['predicted_score'].values for score in s_list]

        pred_result = pd.DataFrame({
            'app_id' : escaped_id,
            'predicted_score' : escaped_score
        })
        
        return pred_result
    
def ease_model(pred_df, k=10):
    ease_B = torch.load("data/ease_B.pt")
    train = pd.read_csv("data/recs.csv")

    ease = EASE(train)

    try:
        res = ease.predict_active(pred_df=pred_df, weight_mx=ease_B, k=k)
    except:
        return

    return res


# def main():
#     pass
#     # act_user = pd.DataFrame({
#     #     'user_id': [999999, 999999, 999999, 999999, 999999, 999999],
#     #     'app_id': [1689910, 1245620, 814380, 620980, 1551360, 774171],
#     #     'is_recommended': [0, 1, 1, 0, 1, 1]
#     # })
#     # act_indices = torch.FloatTensor(ac)

#     # print(
#     #     torch.sparse.FloatTensor(sparse_indices.T, sparse_values)
#     # )

# if __name__ == '__main__':
#     main()