File size: 11,746 Bytes
f7b47a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import os
import json
import gc
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm

class ResidualBlock(nn.Module):
    def __init__(self, channels):
        super(ResidualBlock, self).__init__()
        self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1, bias=False)
        self.bn1   = nn.BatchNorm2d(channels)
        self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1, bias=False)
        self.bn2   = nn.BatchNorm2d(channels)
        self.relu  = nn.ReLU(inplace=True)

    def forward(self, x):
        identity = x
        out = self.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        out += identity
        out = self.relu(out)
        return out

class ChessPolicyValueNet(nn.Module):
    def __init__(self, input_planes, policy_size, num_blocks=12, channels=128):
        super(ChessPolicyValueNet, self).__init__()
        self.conv_in = nn.Conv2d(input_planes, channels, kernel_size=3, padding=1, bias=False)
        self.bn_in   = nn.BatchNorm2d(channels)
        self.res_blocks = nn.Sequential(
            *[ResidualBlock(channels) for _ in range(num_blocks)]
        )
        self.policy_conv = nn.Conv2d(channels, 2, kernel_size=1)
        self.policy_bn   = nn.BatchNorm2d(2)
        self.policy_fc   = nn.Linear(2 * 8 * 8, policy_size)
        self.value_conv  = nn.Conv2d(channels, 1, kernel_size=1)
        self.value_bn    = nn.BatchNorm2d(1)
        self.value_fc1   = nn.Linear(8 * 8 * 1, 256)
        self.value_fc2   = nn.Linear(256, 3)
        self.relu        = nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.relu(self.bn_in(self.conv_in(x)))
        x = self.res_blocks(x)
        p = self.policy_conv(x)
        p = self.relu(self.policy_bn(p))
        p = p.view(p.size(0), -1)
        p = self.policy_fc(p)
        v = self.value_conv(x)
        v = self.relu(self.value_bn(v))
        v = v.view(v.size(0), -1)
        v = self.relu(self.value_fc1(v))
        v = self.value_fc2(v)
        return p, v

class ChessDataset(Dataset):
    def __init__(self, shard_list, move_to_idx):
        self.inputs = torch.cat([shard["inputs"] for shard in shard_list])
        all_moves = []
        for shard in shard_list:
            all_moves.extend([move_to_idx[m] for m in shard["policy"]])
        self.policy_labels = torch.tensor(all_moves, dtype=torch.long)
        outcome_map = {"loss": 0, "draw": 1, "win": 2}
        all_values = []
        for shard in shard_list:
            all_values.extend([outcome_map[val] for val in shard["value"]])
        self.value_labels = torch.tensor(all_values, dtype=torch.long)
        self.buckets = []
        self.sides = []
        for shard in shard_list:
            self.buckets.extend(shard["buckets"])
            self.sides.extend(shard.get("side_to_move", ["unknown"] * len(shard["buckets"])))
        assert len(self.inputs) == len(self.policy_labels) == len(self.value_labels) == len(self.buckets) == len(self.sides)

    def __len__(self):
        return len(self.inputs)

    def __getitem__(self, idx):
        return (self.inputs[idx],
                self.policy_labels[idx],
                self.value_labels[idx],
                self.buckets[idx],
                self.sides[idx])

def load_move_index_map(path="../move_to_idx.json"):
    with open(path, "r") as f:
        move_to_idx = json.load(f)
    idx_to_move = {idx: move for move, idx in move_to_idx.items()}
    return move_to_idx, idx_to_move

def top_k_accuracy(logits, targets, k=5):
    with torch.no_grad():
        topk = logits.topk(k, dim=1).indices
        correct = topk.eq(targets.unsqueeze(1))
        return correct.any(dim=1).float().mean().item()

def train_model(model, train_shard_paths, val_shards, move_to_idx, optimizer, scheduler,
                num_epochs=50, device="cpu", batch_size=256, start_epoch=1):
    policy_criterion = nn.CrossEntropyLoss(reduction='none')
    value_criterion  = nn.CrossEntropyLoss(reduction='none')
    bucket_weight = {
        "1-10": 1.0, "11-20": 1.2, "21-30": 1.3, "31-40": 1.3,
        "41-50": 1.3, "51-70": 1.2, "71+": 1.2, "mating": 1.0
    }
    val_dataset = ChessDataset(val_shards, move_to_idx)
    val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
    best_val_policy_acc = 0.0

    for epoch in range(start_epoch, num_epochs+1):
        model.train()
        train_loss_sum = train_policy_correct = train_value_correct = train_total = 0
        side_correct = {"white": 0, "black": 0}
        side_total   = {"white": 0, "black": 0}

        for shard_path in train_shard_paths:
            shard = torch.load(shard_path, map_location='cpu')
            train_dataset = ChessDataset([shard], move_to_idx)
            train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
            for batch_inputs, batch_policy, batch_value, batch_buckets, batch_sides in train_loader:
                batch_inputs = batch_inputs.to(device)
                batch_policy = batch_policy.to(device)
                batch_value  = batch_value.to(device)
                optimizer.zero_grad()
                policy_logits, value_logits = model(batch_inputs)
                policy_loss = policy_criterion(policy_logits, batch_policy)
                value_loss  = value_criterion(value_logits, batch_value)
                weights = torch.tensor([bucket_weight.get(b, 1.0) for b in batch_buckets], device=device)
                loss = ((policy_loss + value_loss) * weights).mean()
                loss.backward()
                optimizer.step()

                train_loss_sum += loss.item() * len(batch_inputs)
                with torch.no_grad():
                    preds = policy_logits.argmax(dim=1)
                    train_policy_correct += (preds == batch_policy).sum().item()
                    val_preds = value_logits.argmax(dim=1)
                    train_value_correct += (val_preds == batch_value).sum().item()
                    for i, side in enumerate(batch_sides):
                        if side in side_correct:
                            if preds[i] == batch_policy[i]:
                                side_correct[side] += 1
                            side_total[side] += 1
                train_total += len(batch_inputs)
            del shard, train_dataset, train_loader
            torch.cuda.empty_cache()
            gc.collect()

        train_policy_acc = train_policy_correct / train_total
        train_value_acc = train_value_correct / train_total
        avg_loss = train_loss_sum / train_total
        white_acc = side_correct["white"] / side_total["white"] if side_total["white"] else 0
        black_acc = side_correct["black"] / side_total["black"] if side_total["black"] else 0

        print(f"Epoch {epoch}: Train Policy Acc = {train_policy_acc:.4f}, Train Value Acc = {train_value_acc:.4f}, Loss = {avg_loss:.4f}")
        print(f"            (White move acc: {white_acc:.4f}, Black move acc: {black_acc:.4f})")
        scheduler.step()

        model.eval()
        val_policy_correct = val_value_correct = val_policy_top5_correct = val_total = 0
        side_correct_val = {"white": 0, "black": 0}
        side_total_val = {"white": 0, "black": 0}

        with torch.no_grad():
            for batch_inputs, batch_policy, batch_value, batch_buckets, batch_sides in val_loader:
                batch_inputs = batch_inputs.to(device)
                batch_policy = batch_policy.to(device)
                batch_value  = batch_value.to(device)
                policy_logits, value_logits = model(batch_inputs)
                preds = policy_logits.argmax(dim=1)
                val_policy_correct += (preds == batch_policy).sum().item()
                val_policy_top5_correct += policy_logits.topk(5, dim=1).indices.eq(batch_policy.unsqueeze(1)).any(dim=1).sum().item()
                val_preds = value_logits.argmax(dim=1)
                val_value_correct += (val_preds == batch_value).sum().item()
                for i, side in enumerate(batch_sides):
                    if side in side_correct_val:
                        if preds[i] == batch_policy[i]:
                            side_correct_val[side] += 1
                        side_total_val[side] += 1
                val_total += len(batch_inputs)

        val_policy_acc = val_policy_correct / val_total
        val_policy_top5 = val_policy_top5_correct / val_total
        val_value_acc = val_value_correct / val_total
        white_val_acc = side_correct_val["white"] / side_total_val["white"] if side_total_val["white"] else 0
        black_val_acc = side_correct_val["black"] / side_total_val["black"] if side_total_val["black"] else 0

        print(f"         Validation: Policy Top-1 = {val_policy_acc:.4f}, Policy Top-5 = {val_policy_top5:.4f}, Value = {val_value_acc:.4f}")
        print(f"            (White move acc: {white_val_acc:.4f}, Black move acc: {black_val_acc:.4f})")

        checkpoint = {
            "epoch": epoch,
            "model_state_dict": model.state_dict(),
            "optimizer_state_dict": optimizer.state_dict(),
            "move_to_idx": move_to_idx,
            "val_policy_acc": val_policy_acc,
            "val_value_acc": val_value_acc
        }
        torch.save(checkpoint, "checkpoint_last.pt")
        if val_policy_acc > best_val_policy_acc:
            best_val_policy_acc = val_policy_acc
            torch.save(checkpoint, "checkpoint_best.pt")
            print(f"📂 Saved new best model (epoch {epoch}, policy acc {val_policy_acc:.4f})")

if __name__ == "__main__":
    device = "cuda" if torch.cuda.is_available() else "cpu"
    shards_dir = "shards/"
    move_index_path = "move_to_idx.json"

    if not os.path.exists(move_index_path):
        raise FileNotFoundError("move_to_idx.json not found. Please run move2index.py to generate the move index mapping.")
    move_to_idx, idx_to_move = load_move_index_map(move_index_path)
    policy_size = len(move_to_idx)

    model = ChessPolicyValueNet(input_planes=17, policy_size=policy_size, num_blocks=12, channels=128).to(device)
    optimizer = optim.Adam(model.parameters(), lr=1e-3)
    scheduler = optim.lr_scheduler.LambdaLR(optimizer, lambda epoch: min((epoch+1)/5, 1.0))
    start_epoch = 1

    if os.path.exists("checkpoint_last.pt"):
        checkpoint = torch.load("checkpoint_last.pt", map_location=device)
        model.load_state_dict(checkpoint["model_state_dict"])
        optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
        start_epoch = checkpoint["epoch"] + 1
        print(f"\n🔁 Resuming from epoch {checkpoint['epoch']}...\n")
    else:
        print(f"\n🌐 Starting fresh training...\n")

    print(f"Initialized model with {len(model.res_blocks)} residual blocks and {model.policy_fc.out_features} policy outputs.")

    train_shard_paths = [os.path.join(shards_dir, fname) for fname in sorted(os.listdir(shards_dir)) if fname.startswith("shard_") and fname.endswith(".pt")]
    val_shards = [torch.load(os.path.join(shards_dir, fname), map_location='cpu') for fname in sorted(os.listdir(shards_dir)) if fname.startswith("val_") and fname.endswith(".pt")]

    if not train_shard_paths or not val_shards:
        raise RuntimeError("No training/validation shards found. Make sure data_preparation ran correctly.")

    print(f"Training on {len(train_shard_paths)} shards, validating on {sum(len(s['policy']) for s in val_shards)} samples.")

    train_model(model, train_shard_paths, val_shards, move_to_idx,
                optimizer=optimizer, scheduler=scheduler,
                num_epochs=100, device=device, batch_size=256, start_epoch=start_epoch)