Spaces:
Running
Running
File size: 11,746 Bytes
f7b47a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import os
import json
import gc
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
class ResidualBlock(nn.Module):
def __init__(self, channels):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(channels)
self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(channels)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
identity = x
out = self.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += identity
out = self.relu(out)
return out
class ChessPolicyValueNet(nn.Module):
def __init__(self, input_planes, policy_size, num_blocks=12, channels=128):
super(ChessPolicyValueNet, self).__init__()
self.conv_in = nn.Conv2d(input_planes, channels, kernel_size=3, padding=1, bias=False)
self.bn_in = nn.BatchNorm2d(channels)
self.res_blocks = nn.Sequential(
*[ResidualBlock(channels) for _ in range(num_blocks)]
)
self.policy_conv = nn.Conv2d(channels, 2, kernel_size=1)
self.policy_bn = nn.BatchNorm2d(2)
self.policy_fc = nn.Linear(2 * 8 * 8, policy_size)
self.value_conv = nn.Conv2d(channels, 1, kernel_size=1)
self.value_bn = nn.BatchNorm2d(1)
self.value_fc1 = nn.Linear(8 * 8 * 1, 256)
self.value_fc2 = nn.Linear(256, 3)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.relu(self.bn_in(self.conv_in(x)))
x = self.res_blocks(x)
p = self.policy_conv(x)
p = self.relu(self.policy_bn(p))
p = p.view(p.size(0), -1)
p = self.policy_fc(p)
v = self.value_conv(x)
v = self.relu(self.value_bn(v))
v = v.view(v.size(0), -1)
v = self.relu(self.value_fc1(v))
v = self.value_fc2(v)
return p, v
class ChessDataset(Dataset):
def __init__(self, shard_list, move_to_idx):
self.inputs = torch.cat([shard["inputs"] for shard in shard_list])
all_moves = []
for shard in shard_list:
all_moves.extend([move_to_idx[m] for m in shard["policy"]])
self.policy_labels = torch.tensor(all_moves, dtype=torch.long)
outcome_map = {"loss": 0, "draw": 1, "win": 2}
all_values = []
for shard in shard_list:
all_values.extend([outcome_map[val] for val in shard["value"]])
self.value_labels = torch.tensor(all_values, dtype=torch.long)
self.buckets = []
self.sides = []
for shard in shard_list:
self.buckets.extend(shard["buckets"])
self.sides.extend(shard.get("side_to_move", ["unknown"] * len(shard["buckets"])))
assert len(self.inputs) == len(self.policy_labels) == len(self.value_labels) == len(self.buckets) == len(self.sides)
def __len__(self):
return len(self.inputs)
def __getitem__(self, idx):
return (self.inputs[idx],
self.policy_labels[idx],
self.value_labels[idx],
self.buckets[idx],
self.sides[idx])
def load_move_index_map(path="../move_to_idx.json"):
with open(path, "r") as f:
move_to_idx = json.load(f)
idx_to_move = {idx: move for move, idx in move_to_idx.items()}
return move_to_idx, idx_to_move
def top_k_accuracy(logits, targets, k=5):
with torch.no_grad():
topk = logits.topk(k, dim=1).indices
correct = topk.eq(targets.unsqueeze(1))
return correct.any(dim=1).float().mean().item()
def train_model(model, train_shard_paths, val_shards, move_to_idx, optimizer, scheduler,
num_epochs=50, device="cpu", batch_size=256, start_epoch=1):
policy_criterion = nn.CrossEntropyLoss(reduction='none')
value_criterion = nn.CrossEntropyLoss(reduction='none')
bucket_weight = {
"1-10": 1.0, "11-20": 1.2, "21-30": 1.3, "31-40": 1.3,
"41-50": 1.3, "51-70": 1.2, "71+": 1.2, "mating": 1.0
}
val_dataset = ChessDataset(val_shards, move_to_idx)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
best_val_policy_acc = 0.0
for epoch in range(start_epoch, num_epochs+1):
model.train()
train_loss_sum = train_policy_correct = train_value_correct = train_total = 0
side_correct = {"white": 0, "black": 0}
side_total = {"white": 0, "black": 0}
for shard_path in train_shard_paths:
shard = torch.load(shard_path, map_location='cpu')
train_dataset = ChessDataset([shard], move_to_idx)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
for batch_inputs, batch_policy, batch_value, batch_buckets, batch_sides in train_loader:
batch_inputs = batch_inputs.to(device)
batch_policy = batch_policy.to(device)
batch_value = batch_value.to(device)
optimizer.zero_grad()
policy_logits, value_logits = model(batch_inputs)
policy_loss = policy_criterion(policy_logits, batch_policy)
value_loss = value_criterion(value_logits, batch_value)
weights = torch.tensor([bucket_weight.get(b, 1.0) for b in batch_buckets], device=device)
loss = ((policy_loss + value_loss) * weights).mean()
loss.backward()
optimizer.step()
train_loss_sum += loss.item() * len(batch_inputs)
with torch.no_grad():
preds = policy_logits.argmax(dim=1)
train_policy_correct += (preds == batch_policy).sum().item()
val_preds = value_logits.argmax(dim=1)
train_value_correct += (val_preds == batch_value).sum().item()
for i, side in enumerate(batch_sides):
if side in side_correct:
if preds[i] == batch_policy[i]:
side_correct[side] += 1
side_total[side] += 1
train_total += len(batch_inputs)
del shard, train_dataset, train_loader
torch.cuda.empty_cache()
gc.collect()
train_policy_acc = train_policy_correct / train_total
train_value_acc = train_value_correct / train_total
avg_loss = train_loss_sum / train_total
white_acc = side_correct["white"] / side_total["white"] if side_total["white"] else 0
black_acc = side_correct["black"] / side_total["black"] if side_total["black"] else 0
print(f"Epoch {epoch}: Train Policy Acc = {train_policy_acc:.4f}, Train Value Acc = {train_value_acc:.4f}, Loss = {avg_loss:.4f}")
print(f" (White move acc: {white_acc:.4f}, Black move acc: {black_acc:.4f})")
scheduler.step()
model.eval()
val_policy_correct = val_value_correct = val_policy_top5_correct = val_total = 0
side_correct_val = {"white": 0, "black": 0}
side_total_val = {"white": 0, "black": 0}
with torch.no_grad():
for batch_inputs, batch_policy, batch_value, batch_buckets, batch_sides in val_loader:
batch_inputs = batch_inputs.to(device)
batch_policy = batch_policy.to(device)
batch_value = batch_value.to(device)
policy_logits, value_logits = model(batch_inputs)
preds = policy_logits.argmax(dim=1)
val_policy_correct += (preds == batch_policy).sum().item()
val_policy_top5_correct += policy_logits.topk(5, dim=1).indices.eq(batch_policy.unsqueeze(1)).any(dim=1).sum().item()
val_preds = value_logits.argmax(dim=1)
val_value_correct += (val_preds == batch_value).sum().item()
for i, side in enumerate(batch_sides):
if side in side_correct_val:
if preds[i] == batch_policy[i]:
side_correct_val[side] += 1
side_total_val[side] += 1
val_total += len(batch_inputs)
val_policy_acc = val_policy_correct / val_total
val_policy_top5 = val_policy_top5_correct / val_total
val_value_acc = val_value_correct / val_total
white_val_acc = side_correct_val["white"] / side_total_val["white"] if side_total_val["white"] else 0
black_val_acc = side_correct_val["black"] / side_total_val["black"] if side_total_val["black"] else 0
print(f" Validation: Policy Top-1 = {val_policy_acc:.4f}, Policy Top-5 = {val_policy_top5:.4f}, Value = {val_value_acc:.4f}")
print(f" (White move acc: {white_val_acc:.4f}, Black move acc: {black_val_acc:.4f})")
checkpoint = {
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"move_to_idx": move_to_idx,
"val_policy_acc": val_policy_acc,
"val_value_acc": val_value_acc
}
torch.save(checkpoint, "checkpoint_last.pt")
if val_policy_acc > best_val_policy_acc:
best_val_policy_acc = val_policy_acc
torch.save(checkpoint, "checkpoint_best.pt")
print(f"📂 Saved new best model (epoch {epoch}, policy acc {val_policy_acc:.4f})")
if __name__ == "__main__":
device = "cuda" if torch.cuda.is_available() else "cpu"
shards_dir = "shards/"
move_index_path = "move_to_idx.json"
if not os.path.exists(move_index_path):
raise FileNotFoundError("move_to_idx.json not found. Please run move2index.py to generate the move index mapping.")
move_to_idx, idx_to_move = load_move_index_map(move_index_path)
policy_size = len(move_to_idx)
model = ChessPolicyValueNet(input_planes=17, policy_size=policy_size, num_blocks=12, channels=128).to(device)
optimizer = optim.Adam(model.parameters(), lr=1e-3)
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lambda epoch: min((epoch+1)/5, 1.0))
start_epoch = 1
if os.path.exists("checkpoint_last.pt"):
checkpoint = torch.load("checkpoint_last.pt", map_location=device)
model.load_state_dict(checkpoint["model_state_dict"])
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
start_epoch = checkpoint["epoch"] + 1
print(f"\n🔁 Resuming from epoch {checkpoint['epoch']}...\n")
else:
print(f"\n🌐 Starting fresh training...\n")
print(f"Initialized model with {len(model.res_blocks)} residual blocks and {model.policy_fc.out_features} policy outputs.")
train_shard_paths = [os.path.join(shards_dir, fname) for fname in sorted(os.listdir(shards_dir)) if fname.startswith("shard_") and fname.endswith(".pt")]
val_shards = [torch.load(os.path.join(shards_dir, fname), map_location='cpu') for fname in sorted(os.listdir(shards_dir)) if fname.startswith("val_") and fname.endswith(".pt")]
if not train_shard_paths or not val_shards:
raise RuntimeError("No training/validation shards found. Make sure data_preparation ran correctly.")
print(f"Training on {len(train_shard_paths)} shards, validating on {sum(len(s['policy']) for s in val_shards)} samples.")
train_model(model, train_shard_paths, val_shards, move_to_idx,
optimizer=optimizer, scheduler=scheduler,
num_epochs=100, device=device, batch_size=256, start_epoch=start_epoch)
|